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PREFACE

This textbook is intended mainly for students who have already studied
the basic Mathematics and need to study and practice using the methods of
Differential and Integral Calculus. All the important concepts of Calculus are
explained and there are exercises of each point to concentrate on those
methods, which students need to use but which often cause difficulty. The
mathematical language used is as simple as possible.

The textbook covers the topics to be studied:

LINEAR ALGEBRA. MATRICES. MATRIX OPERATION
LINES IN PLANE AND IN SPACE

CALCULUS. FUNCTIONS

THE DERIVATIVE.

INDEFINITE INTEGRAL. DEFINITE INTEGRAL. IMPROPER
INTEGRAL

6. DIFFERENTIAL EQUATIONS
7. EQUATIONS OF MATHEMATICAL PHYSICS

8. ELEMENTS OF THE THEORY OF PROBABILITY
AND MATHEMATICAL STATISTICS

o bk wDd P
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Chapter 1. LINEAR ALGEBRA. MATRICES. MATRIX
OPERATIONS

Definition (Def ). Matrix. An array of numbers forming a rectangular
table is called a matrix.

Def. The size or dimensions or order of a matrix are the number of
rows and the number of columns it contains.

If there are m rows and n columns, the matrix is said to be m by n,
which is written m*n.

Def. If m=n id est if a quantity of rows equals a quantity of columns,
then the matrix is called square.

1.1. Matrix Operations

Def. If A=(a;) and B=(b;,) are both m*n matrices, then their sum,
C=A+B, is also m*n and its entries are given by the formula

Cy =8 +D;

and their difference, b=A-B, is also m*n and its entries are given by
the equation

dy =ay; by

Def. If A=(a;) is an m*n matrix and k is a scalar, then the scalar
multiple s=kA is also m*n and its entries are given by the formula s, =ka, .

Def. The transpose of an m*n matrix Ais the n*m matrix A’ formed by
making the rows of A the columns of A".

Def. Matrix multiplication. If A and B are matrices, then their product,
AB, is defined only if the number of columns of A equals the number of rows
of B. So, if the matrix A is m*n, then B must be n*p in order for the product
AB to be defined. In this case, the size of the product matrix AB is m*p, and
the (, j) entry of AB is equal to the sum of products of entries of row i in A
by corresponding entries of column jin B.

That is: (i, j) entry of AB=(rinA)*(C,inB).

Thus: A B _AB
m*nn*p m#p




Basic definitions

Table 1

English Russian Ukrainian
Matrix (matrices) MaTpHIIA MaTPHIIS
Array MMOCTPOCHNE, MACCUB moOy10Ba, MacHB
Rectangular IIPSMOYTOJIBHBIN IPaMOKYTHHM
Set P pAn
Row CTpOKa PATIOK
Column cToJioen CTOBIEID
Restriction OTrpaHHYCHUEC O0OMEKCHHSI
Scalar CKaJISIP CKaJISIp
Row matrix MaTpHIia - CTPOKa MaTPHI - PTOK
(row vector)
Column matrix MaTpHuIia - cToyber MaTpHIIS - CTOBIICIIb
(column vector)
Vice versa Ha000pOT HaBMNaKH
Transpose TPAaHCIIOHHUPOBAHUE TPaHCIIOHYBaHHSI
Id est (that is) TO €CTh TOOTO

1.1.1. Determinants and their properties

Associated with each square matrix is an important number, called its
determinant.

Def. Determinant. The determinant of the n-th order is a number or an
algebraic expression corresponding to a square matrix with n elements and
calculating by the certain rules.

Method 1. Copy the first two columns of the determinant and place
them to the right of it. Take the products formed by multiplying “down” and
from their sum subtract the products formed by multiplying “up”.

Def. Minor. The minor M;; associated with a jj is obtained by blotting
out of the determinant the row and column on which aj; lies.

Method 2. The expansion along the column or row. The determinant
equals the sum of the products of the entries of any line by their minors.

Theorem 1. The transpose determinant is equal to the original
determinant.

Theorem 2. If two parallel lines — rows or columns of a determinant
are interchanged, the determinant changes sign.

Theorem 3. If two parallel lines of a determinant are identical, then the
determinant is O.

Theorem 4. If the entries in a line are all multiplied by a constant, then
the determinant is multiplied by that constant.




Basic definitions

Table 2

English Russian Ukrainian
Concept MTOHSTHE TTOHSTTS
Determinant OIIPEIEIIUTEID BU3HAYHUK

To be of the form WMETH BUJI MAaTU BUTJIA
OLICHUBATD, OIIIHIOBATH,
To evaluate H H
HAXOIUTh 3HAXOJIUTH
Minor MUHOP MIHOD
. II0JTy4aTh OTPUMYBATH
To obtain yaate, PUMYyBaTH,
OIPEICIIATh BH3HAYATH
To blot out BBIYEPKHUBATH BUKPECIIOBATH
. a3JI0XKCHHE, O3KJIaIaHHs,
Expansion P P A
paciiipeHme PO3IIMPEHHS
To interchange MEHSITh MECTAMU MIHSTH MICLISIMH
To switch IIOMCHSITh TOMIHATH
Task

If A is a 3*3 matrix whose determinant equals 5, what is the
determinant of the matrix 2A?

1.1.2. Identity matrices and inverses

Def. A square matrix, which has 1’s along its main diagonal and O’s
elsewhere, is called an identity matrix and is denoted I.

Def. If both A and B are square matrices and AB=I then A is called the
inverse of B and B is called the inverse of A.

Def. A square matrix that has an inverse is said to be invertible.

1.2. Linear systems

Def. A linear system is a collection of a few linear equations for which
we seek solutions (values of unknowns x,) that satisfy all the equations of the

system simultaneously.

Def. A system that has at least one solution is called consistent.

There are only 3 possibilities for the number of solutions:

1. There are no solutions. Such system is said to be inconsistent.

2. There is exactly one solution.

3. There are infinitely many solutions.

The graphs of the equations in the first case are parallel lines with no
points in common. The graphs of the equations in the second case intersect in
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exactly one point. The graphs of the equations in the third system are lines
that coincide.

Table 3
Basic definitions
English Russian Ukrainian
Identity matrix eIMHUYHAS OJIMHAYHA
MaTpHUIa MaTpPHIIS
Inverse oOpaTHbII 3BOPOTHUI
Similarly 110JI00HO, 1o 110HO,
aHAJIOTUYHO aHAJIOT19HO
Invertible HEBBIPOXKJCHHBIM | HEBHUPOKCHUN
Variable NIEPEMEHHBIH 3MiIHHHA
Unknown HEN3BECTHBIN HEBIIOMHUHA
Simultaneously | omHoBpemMeHHO OJTHOYACHO
At least 10 KpaiftHel Mepe NpUHANMHI
Consistent COBMECTHBIN CITLILHUI
Infinitely OCCKOHEYHO HECKIHYCHHO
Graph rpaduk rpadik
Intersect 1epeceKaThb MEPETUHATH
Coincide COBIIAJATh 30iraTucs
distinct pa3IMYHbIHI pi3HUii
Task

Two distinct solutions x, and x, can be found to the linear system
AX =B. Which of the following is necessarily true?
a)B=0; B) Ais invertible: ¢) X,=-X,, d) there exists a solution x such

that x=x, x=x,.

1.2.1. Cramer's rule

It can be used for solving only a square linear systems.
If A is a square matrix, then linear system Ax =B has a unique solution
for every B if and only if det4=0.

1.2.2. Gaussian elimination

1. Take the coefficients of the unknowns and form the coefficients
matrix. Then attach the constants of the right-hand sides of the equations as
an additional column, producing the augmented matrix.

2. Perform a series of elementary row operations to reduce (transform)
the augmented matrix to echelon form.

A matrix is said to be in echelon form when it's upper triangular; any
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zero rows appear at the bottom of the matrix, and the first nonzero entry in
any row appears to the right of the first nonzero entry in any higher row.

An elementary operations is one of the following:

a) multiplying a row by a nonzero coustant;

b) interchanging two rows;

¢) adding a multiple of one row to another row.

3. Working from the bottom of the echelon matrix upward, evaluate the
unknowns using backsubtitution.

To check the solutions plug it into all the original equations.

Table 4
Basic definitions
English Russian Ukrainian
unique € IMHCTBCHHBIN €IUHUN
to plug MOJICTABUTh 1 JICTAaBUTH
oo UCKJIIOUEHUE BUKJTIOUCHHS
elimination ’ ’
yCTpaHEHUe YCYHEHHS
to augment YBEJINYMBATh 30LIbITYBaTH
upper BEPXHUU BEPXHIN TPUKYTHUM
triangular form | TpeyronabHbBIN BUI BT
top row BEPXHSISI CTPOKA BEPXHIH PSJIOK
bottom row HYDKHSISI CTPOKA HYDKHIN PSIOK
to yield MIPOU3BOJUTD, 3I1MCHIOBATH,
MOJTy4aTh 0JICP>KYyBaTH
Task

A driver wants to learn how many miles per gallon her car gets in the
city and on the highway. On Monday she drove 30 miles in the city and 90
miles on the highway and used 6 gallons. During the 2-day period Tuesday
and Wednesday, she drove75 miles in the city and 300 miles on the highway
and used 17 galons. Thursday she drove 150 miles in the city and 210 miles
on the highway and used 18 galons.

a) How much gasoline evaporates or leaks out of the tank per day?

b) How many miles per gallon does her car get in the city and on the highway?

1.3. The algebra of Vectors

Def. Two parallel directed line segments, PQ, and PQ,, that have the same

length and point in the same direction represent the same vectors.
Def. The vector, that has length 0 and no direction is called the zero vector.
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Def. The length of the vector is called the magnitude and is denoted by |a|. If

the origin of a rectangular coordinate system is at the tail of a, then the head of a
has coordinates (x,y,z) in the space or (x,y) in the plane. The numbers x, and y

and z are called the scalar components of a relative to the coordinate system.
Def. Any vectors of length unit is called a unit vector.
Def. The vectors i =(1,0,0), j=(010), k=(0,01) are called the basic unit vectors.

1.3.1. Algebraic operations on vectors

Def. The sum of two vectors a and b is defined as follows. Place the tail of b
at the head of a. Then the vector sum a+b goes from the tail of a to the head of b.
Observe that b+a=a-+b, since both sums lie on the diagonal of a parallelogram.

Def. Let a and b be vectors. The vector v such that b+v equals a is

called the difference of a and b and is denoted a—b. Thus 6+(5—6)=5.

Def. The negative of the vector a is defined as the vector having the
same magnitude as a but the opposite direction. It is denoted —a. Observe that

a+(-a)=0, just as with scalars.

Def. The product of a scalar and a vector. If k is a scalar and a a vector,
the product ka is the vector whose length is |k| times the length of a and

whose direction is the same as that of a if k is positive and opposite that of a

if k is negative.

Theorem. For any vector a not equal to o, the vector ﬁ IS the unit
a
vector in the direction of a.
Table 5
Basic definitions
English Russian Ukrainian
To point YKa3bIBaTh, yKa3yBaTH,
IIOKAa3bIBATH ITOKAa3yBaTH
Magnitude BEJIMYMHA, MOJYJIb | BEIMYUHA, MOTYITb
(BeKTOp) (BeKTOp)
Origin HaYvajo MI0YaTOK

Tail of a vector

Ha4aJo BEKTOpa

MIOYATOK BEKTOpa

Head of a vector

KOHCII BCKTOpa

KiHEIIb BEKTOpa

Component

KOMIIOHCHTAa

KOMIIOHCHTA

Unit vector

€IMHUYHBIA BEKTOD

OJIMHUYHUI BEKTOP

13



To draw YEepTUTh, CTPOUTH | KPECIUTH, OyayBaTH

To magnify yBEJIMYUBATb, 301IBIIYBATH,
pacTAruBaTh PO3TATYBATH
Task

1. Give an example of plane vectors a and b such that
a) ‘5+5‘¢‘5‘+‘5‘,

b) 5+6\=\5\+\5\.

2. Find the scalar components of a if
a) |a|=10, and a points to the north;

b) 5‘=6, and a points to the southeast.

3. Let a and b be scalars, not both 0. Show that ( a__ b J IS a
Ja?+b? a? +b?

unit vector.
4. If u is a unit vector, what is the length of —3u?
5. Find the unit vector that has the same direction as i+2j +3k .

1.3.2. The dot product of two vectors

Def. Dot product. Let a and b be two nonzero vectors. Their dot
product is the number [a|-[b|-cos6, where ¢ is the angle between a and b. It

is denoted a-b. The dot product is a scalar and is also called the scalar
product of a and b.

If a is the force applied to an object and b is the line segment, then the
dot product a-b defines the work accomplished by the force a in pulling the
object along a straight line from the tail to the head of b.

The angle between two vectors can be determined by the formula:

cosezf—'ki.

ol o

Def. Let a and b be vectors. The projection of a on b is called the
number pr,a=[ajx6, where ¢ is the angle between a and b.

The direction of a vector in space involves three angles, two of which
almost determine the third.

Def. Direction angles of a vector. Let a be a nonzero vectors. The
angles between a and i, j, k are called the direction angels of a. They are
denoted «, B, y respectively. The numbers cosa, cosp, cosy are the

14



direction cosines of the vector a.

cos® a+cos® f+cos’ y =1

In economics the dot product is used as an algebraic convenience.

Table 6
Basic definitions
English Russian Ukrainian
The dot product CKaJSIpPHOE CKaJISIpHUAN
IPOU3BEICHUE JT00yTOK
Angel yro KYT
Projection TIPOCKITHSI TPOCKITisI
Direction angle | HampaBnsromuii | HanpsSMHUH KyT
yroJ
Task

1. Compute ab:

a has length 3, b has length 4 and the angle between a and b
IS 7/4
a=3i—j—2k, b=i+5k.

ilii. a=MN, b= P, where M(4,-12), P(2,-23), Q@12-7),
N(2,3,-4)

2. Find the cosine of the angle between i+6j—k and 4i-j—2k.

3. Find the cosine of the angle between AB and CD if A(0,-1,-2), B(2,-13) ,
C(5,0,3) , D(-2,1,4) .

4. Find the scalar components of 3i—2j on 4j+3k.

1.3.3. The Cross Product. The Triple Scalar Product
Def. Let a =ai +a,j+a;kand b =bi +b,j +bik.

i ] k
The vector | a, a, a5 |=7| 2 “ =71 Bkl “ | s called
b2 b3 bl b3 bl b2
bl b2 b3

the cross product of @ and & . It is denoted @ xb.The determinant of @ xb is
expanded along its first row.

Since the cross product of two vectors is a vector, the cross product is
also called the vector product.

Note that @ x b is a vector, while @ -b is a scalar. -
Theorem 1. The cross product a x 4 is a vector perpendicular to both z and 5.

15



So one of the most common uses of the cross product is in figuring out
a vector normal to two given vectors.

Geometric Description of the Cross Product.

GD expresses the direction and magnitude of @ x5 in terms of those of
aand b.

To figure out the direction of the cross product, we use the right-hand
rule: if the fingers of the right hand curl from ato 4 through an angle less
than 180°, then thumb points in the direction of a x5.

Theorem. The magnitude of axbis equal to the area of the
parallelogram spanned by zand & .

GD: axb is that vector perpendicular to both zand 5, whose direction
Is obtained by the right-hand rule and whose length is the area of the
parallelogram spanned by zand & .

Def. The Triple Scalar Product. The scalar product of vectors (zxb5)
and cis called the triple scalar product. It is denoted abe.

Theorem. The absolute value of the triple scalar product is the volume
of the parallelepiped formed by the vectors @, 5 and c.

Table 7
Basic definitions
English Russian Ukrainian
Right hand rule | mpaBuio “npasoii IPaBIIIO “TIpaBOi
pyku” pyku”
To curl 3aBUBATHCS 3aBUBATHUCS
Thumb OOJIBIIION mately BEJIMKUH TaJIeIh
To span COCIUHSATD, 3'€eIHYyBaTH,
MTOKPHIBATH, MIOKPHBATH,
00pa30BBIBATH YTBOPIOBATH
Triple scalar CMEIIIaHHOE MiIIaHui 10OyTOK
product IIPOU3BEICHNE
Parallelogram napauiesorpaMm napajeaorpam
Parallelepiped napaJuICIICTINITC]] napaJieIeIine;|
Task

1. Let abe anonzero vector. If axb =0and ab=0, must b =07
2. Show, that the points A(0, 1, 2), B(-2, 3, 0), C(1, 4, -2) and D(0, 9,
8) lie in the same plane.
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Chapter 2. LINES IN PLANE AND IN SPACE

2.1. Lines in plane

Let 7 = A4i + Bj be a nonzero vector and (x,,y,) be a point in the xy
plane. There is a unique line through (x,,y,) that is perpendicular to 7.
Vector 7 is called a normal to the line.

Theorem 1. An equation of the line in the xy plane passing through
(xo,¥,)a@nd perpendicular to the nonzero vector 7z = Ai+Bj is given by
A(x—x0) +B(y—y,)=0.

As theorem 1 shows, to find a vector perpendicular to a given line
Ax+By+C =0, form the vector n= AT +Bj. It will be perpendicular to the line.

The constant term C plays no role in determining the direction of the line or
of a vector perpendicular to it.

Theorem 2. The distance from the point B(x,,y,) to the line L whose

.. . |Ax,+ B C
equation is Ax +By+C =0 is A + By, + ‘
VA + B
An equation of the line determined by two points: X~ % = Y=%

NL=X Y, Y%

2.1.1. Polar coordinates

Rectangular coordinates are only one of the way to describe points in
the plane by pairs of numbers. Another system is called polar coordinates.

PC describe a point p as the interChapter of a circle and a ray from the
center of that circle. They are defined as follows.

Select a point (pole) in the plane and a ray emanating from this point
(polar axis). Measure positive angles ¢ counterclockwise from the polar axis
and negative angles clockwise. Now let r be a number. To plot the point P
that corresponds to the pair of numbers r and g, proceed as follows:

If r is positive, P is the interChapter of the circle of radius r whose
center is at the pole and the ray of angle ¢, emanating from the pole. If r isg,
P is the pole, no matter what ¢ is.

If r is negative, P is at a distance || from the pole on the ray directly

opposite the ray of angle 4.
In each case P is denoted (r,9).

17



2.1.2. The relations between polar and rectangular coordinates

X=rcos@
y=rsing,;

r2=x2+v2 tgl =
y*, 190 ==

y

Basic definitions

1. Find the direction cosines of the line through the points (4,-1)

and (-2,3).

2. Find the distance from the point (-2,-3) to the line determined by

the points (0,4) and (-3,7).

18

English Russian Ukrainian
Polar MOJISIPHBIC MOJIAPHI KOOPJIMHATH
KOOPIMHATHI
Plane TUTOCKOCTD TUTOIMHA
Normal HOpMaJTh HOpMaJIh
Conversely 00paTHO 00epHEHO
Inspection OCMOTD OTJISIT
Right triangle PSIMOYTOJTBHBIT IPSIMOKYTHHIA
TPEYTOJIBHUK TPUKYTHHUK
Origin Ha4ajo (CUCTEMBI MOYaTOK (CHCTEMU
KOOPAMHAT) KOOPJIUHAT)
Ray ay4 IPOMIHb
To emanate UCXOIUTH BUXOJTUTH
Pole HOJIFOC TIOJTIOC
To measure U3MEPSTH, BUMIPIOBATH,
OTKJIaJIbIBATh, BiJIKJIQ/IaTH,
OTMEPSATH BIIMIPSTH
Counterclockwise B HAIpaBJICHUU y HAapsSIMKY TPOTH
IIPOTUB YaCOBOU TOJWHHUKOBOT
CTPENKHU CTPUIKH
Clockwise B HAIPaBJICHUU y HAIPSIMKY
4aCOBOW CTPEJIKU TOAUHHHUKOBOL
CTPUIKHU
To go out BBIXO/IUTh BUXOJIUTH
Task




3. Give at least three pairs of polar coordinates (r,9) for the point

)

4. Transform the equation into one in  rectangular
coordinates:r=3;r=sing.

2.1.3. Conic Chapters: ellipse, hyperbola, parabola

Def. The interChapter of a plane and the surface of a double cone is
called a conic Chapter.

If the plane cuts off a bounded curve, that curve is called an ellipse. In
particular, a circle is an ellipse.

If the plane is parallel to the edge of the double cone, the interChapter
iIs called a parabola.

In the cases of the ellipse and the parabola, the plane generally meets
just one of the two cones.

If the plane meets both parts of the cone and is not parallel to an edge, the
interChapter is called a hyperbola. The hyperbola consists of two separate pieces.

For the sake of simplicity, we shall use a definition of the conic
Chapters that depends only on the geometry of the plane.

Def. Ellipse. Let 7 and F' be points in the plane and let a be a fixed
positive number such that 24 is greater than the distance between F and F’.
A point P in the plane is on the ellipse determined by F,F’ and 2aif and
only if the sum of the distances from P to F and from P to F' equals 2a.
Points ' and F' are the foci of the ellipse.

To construct an ellipse, place two tacks in a plane, tie a string of length
2ato them, and trace out a curve with a pencil held against the string,
keeping the string taut by means of the pencil point.

The foci are at the tacks.

Def. The four points on the ellipse that are the furthest from or the
nearest to the center are called vertices.

A circle does not have vertices.

Find the four vertices of the ellipse by checking where the curve
intersects the x and y axes. Setting y=0 in equation, we obtain x=a or
x=-—a; if we set x=0 in equation, we obtain y =5 or y=-b.

Thus the four vertices have coordinates (a,0);(-a,0),(0,b)and(0,-b) Observe
that the distance from ForF' to (o,b) isS a.

The right triangle with vertices F, (o,b), and the origin, is a reminder of
the fact that b’ =a*-c’.
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Keep in mind that in above ellipse « is larger than 5. The semimajor
axis is said to have length «a; the semiminor axis has length 5.

Observe that we could interchange the roles of x and y and produce an
ellipse with foci on y axis. In this case, y would have the larger denominator.

Table 9
Basic definitions
English Russian Ukrainian
Conic Chapter KOHHUYECKOE KOHIYHUI
CeueHHe NIEPETHH
Ellipse AJUTATIC SITIC
Curve KpUBas KpHUBa
Bounded 3aMKHYTHIH 3aMKHYTHH
Cone KOHYC KOHYC
Edge Kpaii, peopo Kpaii, peopo
Parabola napaboJia napaboJia
Hyperbola runepoosa rinepOoJia
For the sake of | paau nmpocToThl 3apaau
simplicity MIPOCTOTH
Focus doxkyc dboxkyc
To tie CBSI3BIBATH, 3B'sI3yBaTH,
COCJIMHSTh 3'€IHYBaTH
String HUTH HUTKA
To trance YEepTUTD KpPECITUTHU
Tout TYTO HATSIHYTBIA | TYTrO HATATHYTUU
To get rid of N30aBIIATHCS 1030yBaTUCs
Semimajor axis OopImas OiIbIIa MiBBICH
IOJTYOCh
Semiminor axis | Maas moJxyoch MaJia MiBBiCh
Task

1. Find the equation of the ellipse with foci at (0,3) and (0,—3) such that

the sum of the distances from a point on the ellipse to the two foci is 14.
2 2

2. Sketch the graph of the equation % + §—6 =1 and its foci.

Def. Hyperbola. Let 7 and F’ be points in the plane and let a be a fixed
positive number such that 24 is less than the distance between £ and F'. A point
P in the plane is on the hyperbola determined by F', F' and 2q if and only if the
difference between the distances from P to F and from P and F' equals 2a
(or—2a). Points Fand F'are called the foci of the hyperbola.
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A hyperbola consists of two separate curves.
Def. Asymptote. The lines y» :%x and y :—%x are called asymptotes

of the hyperbola.

It can be shown that the distance between points of hyperbola and points of
its asymptotes approaches 0 when the points of the hyperbola move to infinity.

Def. Parabola. Let L be a line in the plane and let F be a point in the plane
which is not on the line. A point P in the plane is on the parabola determined by
F and L if and only if the distance from P to F equals the distance from P to the
line L. Point F is the focus of the parabola; line L is its directrix. The point on the
parabola nearest the directrix is called the vertex of the parabola.

2.1.4. Translation of and the

Ax*+Cy* +Dx+Ey+F =0

axes graph of

The equation of any geometric object depends on where we choose to
place the axes. Clearly, a wise choice of axes may yield a simpler way to
choose convenient axes and uses the method to analyze equations.

A point P has coordinates (x,y) relative to a given choice of axes.
Another pair of axes is chosen parallel to the first pair with its origin at the
point(h,k). Call the second pair of axes the x')’axes.

Inspection of the figure shows that

X'=x-h, y=y-k,

or equivalently,

x=X'+h, y=y'+k.

To transform the equation complete the square and use last formulas.

Table 10
Basic definitions
English Russian Ukrainian
Branch BETBb THJTKA
Upward BBEPX Haropy
Downward BHH3 YHU3
To approach PUOIKATHCS HaOJIMKATHCS
Infinity OECKOHEYHOCTh | HECKIHUYEHHICTh
Asymptote ACHMIITOTA ACHUMIITOT
Directrix JUPEKTpHUca JTUPEKTpuca
To complete the BBIJICTUTD BHJIUIMTH TIOBHUHN
sSquare ITOJIHBIA KBAJIpaT KBaapar
Moreover KpOME TOTO KpIM TOTO
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Task
1.  Using a suitable translation of axes, graph the equations relative
to the xy axes:
a)y=(x+1)>.
b) y—2=2(x-1)°.
) y=2x*—12x+20.
d) 9x* —4y®-18x-27=0.

2.1.5. Planes

A vector 7 is said to be perpendicular to a plane if 7 is perpendicular to
every line situated in the plane.

We will consider the theorem, giving an algebraic condition that a point
(%, Yo, Z,) Must satisfy to be in a particular plane.

Theorem 3. An equation of the plane, passing through (x,,y,,z,)and
perpendicular to the nonzero vector A4i+Bj+Ckis given by
A(x—x0)+B(y— ) +C(z —zy) =0.

Theorem 4. Let 4,B,Cand Dbe constant such that not all 4,Band
Care 0. Then the equation 4x + By + Cz + D = 0describes a plane. Moreover,
the vector Ai + Bj + Ck is perpendicular to this plane.

Theorem 5. The distance from the point (x,y,,z)to the plane
|Ax, + By, + Cz, + D|

JA2+B+C

An equation of the plane determined by three points.

Let we have three points 7,(x,,,z,), Th(xy,,,2,)and T3(x;,5,2;). If
they don’t lie on a single line, they determine a unique plane passing through

X=X Y-y I-1%
them. Its equation is given by |x,-x, y,-y, z,-z|=0.
X=X Y=Y 434
An angle between two planes.
The angle between two planes is defined to be the angle between their

Ax, + By, + Cz, + D=01is

normals, chosen so that the angle is at most %

If the planes are perpendicular, the angle between them is %,hence

A A, + BB, +CC,=0. If the planes are parallel, their normals are parallel
too, thus A_B_ Q.
AZ BZ CZ
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Task
1. Find the distance from the point (0,0,0)to the plane that passes

through (3,2,—1)and is perpendicular to vector 2i + j + k.
2. How far is the point (2,3,—1)from the plane determined by the points
(LL1), (-1,2,3) and (3,-1,4)?

2.2. Lines in space

Vectors provide a neat way to treat the geometry of lines in space.

Consider the line Lthrough the point P (x,,y,,z,) and parallel to the
vector a=aji+a,j+ak . A point P(x,y,z) is on this line, if and only if the
vector B P is a parallel to . One way to express that PP is parallel to a is
to assert that there is a scalar ¢ such that

PP=ta;

id est, (x—x)T +(y—y,)] +(z—2z,)k =tai +ta,j +tak .

Consequently, we have these parametric equations for the line through

(xy,Vo-2,) Parallel to @ = aji +a,j+ask .

X =Xx,+1iq

Y=y, tia,
z=2z,+1la;

Another way to express that PP is parallel to a is to use the condition
when two vectors are parallel:

X=X _ Y=Y _2-%

& &, &

If none of a,,a,,a, is 0, the equations are called symmetric equations of
the line. These nonparametric equations describe the line as the interChapter
of two planes

X—Xy — Y=Y Y=Y — Z—1, )

a & & @ a

And this is the third way to determine the line in space.

Def. Direction numbers of the line. If vector a=a;i+a,j+ak is
parallel to the L then vector ais called direction vector of L.

Note that direction numbers and vector are not unique.

Equation of the line through two points.

Let we have two points B(x,,,,z;) and P,(x,,Y,,2,). In order to find the

equation of the line through these points we can choose the vector PP, as the
direction vector of the line. Having substituted its coordinates into symmetric
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equations of the line we find X~ % - Y=% _ 274
=X Y.~V 4,74

Table 11
Basic definitions
English Russian Ukrainian
Neat CTPOWHBIH, CTPYHKHIA,
JJAKOHUYHBIN JTAKOHIYHHI
To assert yTBEPXKIATh 3aTBEPKYBaTH
Direction HaTPaBIISIOINE HaAIPSIMHI YUCIIa
numbers qriclia
Direction vector | HampapJISIONME | HANPIMHHUIA BEKTOP
BEKTOP
Parametric ITapaMeTPUIECKUI napaMeTPUYHHAN
Set MHO>KECTBO MHOXKHHA
Task

1. Find the angle between the line through (0,0,0) and (LL1) and the
plane through ,2,3), (4,1,5), and (2,0,6).

2. How far apart are the planes parallel to the plane 2x-5y+z+1=0 that
pass through the points (1,2,3) and (-1,0,4)?

3. Where does the line through (1,2,1) and (3,1,1) meet the plane
determined by the points (2,-1,1), (5,2,3) and (4,1,3)?

4. Graph the plane and show its intercepts. g+%+i=1

2.2.1. Graph of equations

The set points (x,y,z) that satisfy some given equation in x,y and
zis called the graph of that equation. For instance, the graph of the
equation Ax+By+Cz+D=0, where not all of 4,B and C are 0,is a plane.

Def. Cylinder. Let R be a set in a plane. The set formed by all lines that
are perpendicular to the given plane and that meet R is called the cylinder
determined by R.

Keep in mind that if an equation involves at most two of the letters x, y
and z, its graph will be a cylinder in the space.

Def. The set of all points that are a fixed distance » from a given point
(a,b,c) is a sphere of radius » and center (a,b,c).

To sketch this sphere, show the horizontal equator.
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A point (x,y,z)is on this sphere when the distance between it and
(a,b,c) IS r.

Def. The graph of Yy C——1 where a,b,c are positive constants, is

b2
called an ellipsoid.

In the special case when a =5 =c¢ the equation becomes the equation of
a sphere of radius a.

An ellipsoid meets the coordinate planes in ellipses.

To find where the ellipsoid meets a given axis, set the variables
corresponding to the other two axes equal to 0.

The graph of x>+ y* +z*> =1 is the sphere of radius 1and center at the
origin. By changing some of the plus signs to minus signs, we get new
equations and graphs that are quite different from spheres.

If we make all three coefficients negative, the equation becomes
—x2-y*-7"=1, or x*+y?+z?=-1. Since the left part of the equation is the
sum of squares of real numbers, it is never negative; thus there are no
points on that graph.

Next, the graphs of x*+y*—z>=1 and x*-y*-z?=1 turn out to be of
interest and will introduce the “hyperboloid of one sheet” and “hyperboloid
of two sheets”.

Def. For any positive numbers a,b,c the graph of ——E)’———: IS

called a hyperboloid of two sheets.
Cross Chapters by planes parallel to the yzplane are ellipses, single
points, or else empty. The cross Chapters by the xy and the xz planes are the

hyperbolas.

Two minuses and one plus in any arrangement give a hyperboloid of
two sheets.

Revolving the hyperbola Z—Z—Z—;l about the x axis produces a

2

hyperboloid of two sheets; revolving it about the y axis a hyperboloid of one
sheet.
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Basic definitions

English Russian Ukrainian
Cylinder 100203003 9170) IIWTIHP
To erect COOpYXKaTh, CHOPY/IKYBaTH,
CO3/1aBaTh CTBOPIOBATH
Sphere cepa chepa
Radius paanyc pajaiyc
Ellipsoid SIUTATICOUT EJIIICOIN
Various pa3IMYHBIN pi3HUiA
Hyperboloid of | omHomonocTHBIH OJTHOIIOJINI
one sheet rUIepOOoJIOn T rinep6o10in
Hyperboloid of | nBymosnocTHBIH JIBYTTOJIHH
two sheets runepOoIon;T rinep0010i1
Revolution TIOBOPOT MIOBOPOT
Task

Table 12

Sketch the given surfaces, showing any useful cross Chapter. Also
describe its general appearance in words: include a description of cross

Chapters and intercepts and tell whether it a surface of revolution.

a)
b)
c)
d)

e)
f)

X +y?+2°+4y-22-4=0,

2 2

XY 2oy,

4 9

—x*—y?+17° =1,
y+x>=0.
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Chapter 3. CALCULUS. FUNCTIONS

Def. Let X and Y be sets. A function from X to Y is a rule or method
for assigning to each element in X a unique elementin Y.

A function may be given by a formula or a graph. It is often indicated
by a table.

Def. Let X and Y be sets and let /' be a function from X to Y. The set
X is called the domain of the function. It f(x)=y, yis called the value of f
at x. The set of all values of the function is called the range of the function.

The value f(x) of a function f at x is also called the output, x is
called the input or argument.

If y=1f(x), the symbol x is called the independent variable and the
symbol y is called the dependent variable.

If both the inputs and outputs of a function are numbers, we shall call
the function numerical or a real function of a real variable.
Def. Graph of a numerical function. Let / be a numerical function.

The graph of f consists of those points (x,y) such that y=f(x).

Def. Composition of functions. Let / and g be functions. Suppose that
x is such that g(x) is in the domain of f.Then the function that assigns to x
the value 1(g(x)) is called the composition of /" and g. It is denoted f.g.

In other words to compute f o g, first apply gand then apply 1 to the result.

Certain functions behave nicely when composed with the function —x.

Def. Even function. A function fsuch that 7 (-x)= f(x) is called an
even function,

Def. Odd function. A function f such that f(-—x)=-/(x) is called an
odd function.

Most functions are neither even no odd.

The graph of an even function is symmetric with respect to the y axis.
The graph of an odd function is symmetric with respect to the origin.

Def. A function f that assigns distinct outputs to distinct inputs is
called a one-to-one function.

The graph of a one-to-one function has the property that every
horizontal line meets it in at most one point.

Def. If 7(x)< f(x,) whenever x <x,, then fis an increasing function.

If /(x)> f(x,) whenever x <x,, then f is a decreasing function.
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These two types of functions are also called monotonic.
Def. Let y=f(x) be a one-to-one function. The function g that

assigns to each output of s the corresponding unique input is called the

inverse of f.
Basic definitions
English Russian Ukrainian
To indicate [I0Ka3bIBaTh, IIOKa3yBaTH,
NpPEJCTaBIATh | MPEACTABIATH
Domain o0macTb o0macThb
OTIpeIeIICHUS BU3HAYCHHS
Range 00acTh 00J1aCTh 3HAYCHD
3HAYEHUH
Independent He3aBHCHUMas He3aJIe)KHa
variable TIepeMeHHas 3MiHHA
To compose COCTaBJISITh CKJIaJIaTH
Composition of GyHKIUSA OT (byHKIIIS Bix
functions byHKIIH, dyHKIIi1, cKTaHa
CJIOKHAs byHKLISA
byHKIUSA
Even function | uernas ¢yHkims | mapHa QyHKIsS
Odd function HeJeTHas HenapHa QyHKITiS
byHKIUS
One-to-one OJIHO3HAaYHas OJIHO3HAYHa
byHKIUS GyHKITS
Increasing BO3pacTarolas 3pocraroya
function byHKIHS byHKIIIs
Decreasing yObIBaromias yOyTHa (yHKIIis
function byHKIHS
Monotonic MOHOTOHHBIN MOHOTOHHUU
Task

1. Describe the domain and range of the functions:

a) f(x):%; b) f(x)=—;

e

1
1-x

C) f(x)=log,(4+x?).

Table 13

2. For the given function evaluate and simplify the given expression
a) f()=x*, fla+) - f(a).

b) f(x)

el f0-tw
X

u-v
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3. Express the given functions as compositions of two or more simpler
functions.

8) =5 b) y=sin3—%).

4. Let f(x)=sinx. s f one-to-one if the domain is taken to be:

a) the entire x axis?

b)the interval [0,27]?

c) the interval [0,7]?
T

d) the interval ?
)the interval [ 5 2]

3.1. The limit of a function

The concept of a limit provides the foundation for both the derivative
and the integral.
Consider a function fand a number awhich may or may not be in the

domain of f. In order to discuss the behavior of f(x)for xnear a, we must
know that the domain of f contains numbers arbitrary close to a. Note how

this assumptions is built into the following definitions.
Def. Limit of f(x)at a. Let fbe a function and a some fixed number.

Assume that the domain of f contains open intervals (c,a)and (a,b). If there

IS a number Lsuch that as xapproaches a, either from the right or from the
left, /(x)approaches L, then Lis called the limit of f(x)as x approaches a.

3.1.1. One-sided limits

Def. Right-hand limit of f(x)at a. Let f be a function and a some fixed
number. Assume that the domain of fcontains an open interval (a,b).If, as
xapproaches afrom the right, 7(x) approaches a specific number L, then
Lis called the right-hand limit of f(x) as x approaches a.

It is read “the limit of f of xas xapproaches afrom the rightis L.

The left-hand limit is defined similarly. The only differences are that
the domain of f'must contain an open interval of the form (c,a)and f(x)is

examined as xapproaches a from the left.
Note that if both the right-hand and the left-hand limits of fexist

at aand are equal, then the limit of f(x)as x — aexists. But if the right-
hand and the left-hand limits are not equal, then the limit of f(x)as

x — adoes not exist.
The tamest function are the constant function. A constant function
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assigns the same output to all inputs. If that fixed output is L, then
f(x)=Lfor all x. The graph of this function is a line parallel to the xaxis.
Sometimes it is useful to know how f(x) behaves when xis very large

positive number or a negative number of large absolute value.
Rather than writing “as x gets arbitrary large through positive values,

f(x) approaches the number L, is customary to use the shorthand
It could be happen that as x-—>o a function

remains arbitrarily large and positive.
It is important, when reading the shorthand lim f(x) =00, to keep in

mind that “o ” IS not a number.

Basic definitions

X—>0

Graph the function

-x if x<0
f(x)=41 if x=0
2 if x>0
and find
a) lim f(x);
b) Iim f(x);

x—>0"

¢) lm f(x);

30

English Russian Ukrainian
Limit npenen TpaHuUIls
Derivative IIPOU3BOTHAS IoXiHa
Integral WHTErpaj 1HTEerpa
Behavior [IOBEICHUE [IOBEIIHKA
Arbitrary close CKOJIb YTOIHO SIK 3aBI'OJTHO
OJIM3KHe OJIM3bK1
One-sided limit | omHOCTOpPOHHUI oaHOOIYHA
npesen TPaAHUIIS
Right-hand limit | mpaBocTopoHHwuit npaBoOiYHA
npee IPaHUIIS
Left-hand limit | neBocTopoHHHUE | JIBOCTOPOHHS
npee IPaHUIIS
Tame AJIEMEHTApHBIN, | €IIEMEHTapHUU,
ITPOCTOM MPOCTIH
Task

f(x) becomes and

Table 14



d) lim f(x);
e) f(0).

3.1.2. Properties of limits
Theorem. Let / and g be two functions and assume that lim 7 (x) and

X—a

limg(x) both exist. Then

xX—>a

1. lim(f(x)£g(x) =1im f (x) £limg(x), id est the limit of the sum of two

functions exists and equals the sum of the two given limits. This property
extends to any finite sum of functions.

2. lim f (x)- g(x) =lim f()dimg(x). In particular, if g(x)=k, where k& is any
constant, limkf (x)=klim f(x) . Similarly this property extends to the product of
any finite number of functions.

lim f(x)

3. lim %) _ if limg(x) =0
Sg00 limg)

limg(x) .
4. 1im £ (0° =(lim f(x)) = if lim f(x)>0

3.1.3. Limits of a polynomial as x — or x — —w

It can be shown that if, as x—>o, f(x)—>o and g(x)=L>0, then
lim £ (x)-g(x) =c0.

Def. A polynomial is a function of the form a x"+a_,x"*+...+a,, Where

a,,ay,...,a, are fixed real numbers and » is a nonnegative integer. If @, is not

0, nis the degree of the polynomial.
Let f(x) be a polynomial of degree at least 1 and with the lead

coefficient a, positive.
Then lim £ (x) = oo.
It the degree of f is odd, then lim £ (x)=—0.

3.1.4. A contest between a large numerator and a large denominator

Let f(x) be a polynomial and let ax” be its term of highest degree. Let
g(x) be another polynomial and let hx™ be its term of highest degree.

n

Then tim &) _ jim &,
X—>+o0 g(x) X—>+0 me

In short, when working with the limit of a quotient of two polynomials
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as x —oo Or as x— -, disregard all terms except the one of highest degree in
each of the polynomials.

Table 15
Basic definitions
English Russian Ukrainian
To extend pacrpoCTpaHsTh HOIITMPIOBATH

Finite KOHEYHBIN KIHIIEBUIA
Polynomial ITOJIUHOM, TIOJIIHOM,

MHOTOYJICH OaraTousieH
Degree CTEIEHb CTYIIIHb

Lead coefficient CTapIIHiA cTapuInii koeimieHT
Kod(huIreHT
To disregard npeHeOpeyb 3HEBAKUTHU

Let p(x) be a polynomial of », with lead term ax", a>0, and let Q(x) be

a polynomial of degree m, with lead term bx™, b>0. Examine lim P jf

= Q(X)

a) m=n,b) m<n,C) m>n.
1.  Given that lim f(x) =« and limg(x) =, discuss

X—o

a) lim(f () +9(x)).
b)  lim(f(0-g(0).
C) lim £ ()g(x) .

d) lim+ ).
= 9(x)

3.1.5. Computations of limits

The technique of factoring out a power of x applies more generally than
just to polynomials.
It was assumed that

lim f (g(x)) = f (limg(x)).

For the functions / commonly met in calculus this switch of the order
of "lim" and " /" is justified.

In case o« —oo it is not immediately clear how this difference behaves. It
IS necessary to use a little algebra and rationalize the expression.
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3.1.6. Asymptotes and their use in graphing
Def. If lim f (x) =L, where L is a real number, the graph of y= f(x)

gets arbitrary close to the horizontal line y=L as xincreases. The line

y =L is called a horizontal asymptote of the graph of f. An asymptote
Is defined similarly if f(x)»>Las x— -w.

Def. If limf(x)=« or if limf(x)=w, the graph of y=/f(x)

x—a" X—a~

resembles the vertical line x=a for xnear a. The line x=aqis called a
vertical asymptote of the graph of f.A similar definition holds if
lim f(x) = -0 OF lim f(x)=—o.

x—a" Xx—a~

Def. The line y=kx+5 is a tilted asymptote of f(x) if the function
f(x) may be represented of the form

f(X)=kx+b+a(x),

where lima(x) =0.

Theorem. In order to the graph of the function f(x) have a tilted

asymptote, it is necessary and suffices to exist the limits.

im—® _ and lim(f (x)—kx) =b

X—>0 X

or tim% _y and lim (f (x) k) =b.

== X
Table 16
Basic definitions

English Russian Ukrainian

Commonly met 9acTo 110 9acTo
BCTPCUAIOIIUICS | 3yCTPIYaeThCs
Switch NIEPECTAHOBKA NIePECTAaHOBKA
To resemble OBITh MOXOKUM OyTH CXOXKHM

Tilt HaKJIOH HaXHJT
Task

1. Examine the given limits:
a) lim(vx? +100x —vx? +50x).

X—>0

[5.2
b) lim 2x" +4x

e J4x? o

c) lim :
) x——1" (X + 1)2
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d) lim—.
x—0" 2x —1
2. Use asymptote to sketch the graphs of the functions:
|
a = :
) f(x) Gl

1

=

3
X +Xx

b) f(x)=

XZ

x?+1

c) y=

3.1.7. The limit of (sin 8)/6 as & approaches 0

So far we found limits by algebraic means, such as factoring,
rationalizing, or canceling. But some of the most important limits in calculus
cannot be found so easily. To reinforce the concept of a limit and also to

prepare for the calculus of trigonometric functions, we shall determine
sing

6050 @

Since both the numerator and the denominator, approach o, this is a
challenging limit.

Theorem 1. Let sine denote the sine of an angle of sradians. Then
. sing
lim—— =1.

60 @
The Squeeze Principle. If g(x)< f(x)<h(x) and limg(x) =L and
limh(x)=L, then limf(x)=L.

Theorem 2. Let coso denote the cosine of an angle of ¢ radians. Then

limi=9930 _q.
0—0 9

This implies that when ¢ is small, 1-cose is much smaller than .

From a practical point of view these limits showed that if angles are
measured in radians, then the sine of a small angle is “roughly” the angle
itself, that is sinx = x.

Def. If lima(x)=0, limp(x)=0 and Ixin;%:l, then the functions «(x) and
p(x) are equivalent. It may be proved that the following functions are
equivalent as x —»0:

sin X = tan X = arcsin X = arctan X = x
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3.1.8. Natural logarithms

Let’s discuss the limits: lim@+x)* and

x—0

lima+ ).
X—00 X

a) As x—0, the base 1+x approaches 1 and the exponent 1 approaches
X

. The base 1influences the exponential function to be 1. The exponent
o influences the exponential function to be large. Thus this is a challenging

limit.

b) As x— «, the base 1+§ approaches 1and the exponent xapproaches

«. S0 this is the same case.

It was proved that both the limits exist and are equal.
Their value is denoted by number ¢ and it is approximately equal to

e~2,718...

Thanks to its useful properties the number e was chosen as a base of a
special type of logarithm. It is called natural logarithm and is denoted Inx.

That is

Inx=1log, X .

Basic definitions

English Russian Ukrainian
To reinforce yYCHJIUBATh, IT1ICHJTFOBATH,
NOAKPEIISATH M1IKPITITIOBATH
To challenge TpeOOBaTh BHMaraTH
(BHUMAaHUSA) (yBaru)
Radian paanaH pamiaH
Squeeze CKaTue CTUCK
To imply 0JJpa3yMeBaTh MaTH Ha yBa3i
Roughly rpy0o, rpy0o,
PUOJIM3UTENIBHO pUOJIM3HO
Estimate OLIEHKA OLIIHKA
Base OCHOBaHHE OCHOBA CTETICHS
CTENEeHU
Exponent MIOKa3aTelb MMOKa3HHK
CTENEeHU CTENeHs
Logarithm norapudm Jorapudm
Task

Examine the limits:

a) L
) lim

1—cos@
0>
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b) limAcoth.

h—0

. l—cosx
c) lim T
x—0" X

1. What is domain of the function
sinx

f =30 9
X

Show that f(x) is an even function.
Find lim f (x) .

2. Find the limits
3
a) lim(1-5x)~.

x—0
b) lim(* "2
X0 X

)72x.

3.2. Continuous functions

Usually we expect the output of a function at the input « to be closely
connected with the outputs of the function at inputs that are near a. The
functions of interest in calculus usually behave in the expected way; they
offer no spectacular gaps or jumps. The graphs of these functions consist of
curves or lines, not wildly scattered points. The technical term for these
functions is “continuous”.

Def. Continuity from the right at a number a. Assume that f(x) is

defined at « and in some open interval (a,b). Then the function fis
continuous at  from the right if lim f(x) = f(a).

This means that
1. 1im f(x) exists and

x—a"

2. that limitis f(a).

Def. Continuity at a number a. Assume that f(x) is defined in some
open interval (b,c) that contains the number a. Then the function 1 is
continuous at aif lim f (x) = f (a). This means that

1. 1imf(x) exists and

X—a

2. that limitis f(a).
Def. Continuous function. Let f be a function whose domain is the x
axis or is made up of open intervals. Then 7 is a continuous function if it is

continuous at each number « in its domain.
Only a slight modification of the definition is necessary to cover
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functions whose domain involve closed intervals. We will say that a function
whose domain is the closed interval [a,b] is continuous if it is continuous at
each point in the open interval (a,b), continuous from the right at a, and
continuous from the left at b.

If / and g are defined at least in an open interval that includes the

number ¢ and if /' and g are continuous at a, thenso are f+g, f—g, fg.

Moreover, if g(a) =0, % is also continuous at a.

Let /' be a continuous function. If g is some other function for which
lim f(g(x)) = f (limg(x)) .
That is for continuous f, " /" and "lim" can be switched.

1.

Table 18
Basic definitions

English Russian Ukrainian

Continuous HENPEPBIBHBIN Oe3rnepepBHUI
Spectacular b exTHBIMI eheKTHUI

Gap pa3pbIiB pO3pUB
To scatter pazOpachIiBaTh PO3KUAATH
To amount PaBHATHCS PIBHATHCS
Slight HE3HAYUTCIHLHBIN HE3HAYHUI
Task

Let f(x) equal the least integer that is greater or equal to x. For

instance, f(3)=3, f(3,4)=4, f(3,8)=4. This function is sometimes denoted [x]
and called the “ceiling” of x.

a)
b)
c)
d)

e)
f)
9)
2

2
D

Graph f.
Does lim f(x) exist? If so, what is it?

x—>4"

Does lim f(x) exist? If so, what is it?

x—4*

Does lim f'(x) exist? If so, what is it?

x—>4

Is / continuous at 4?

Where is f continuous?

Where is /' not continuous?

Let f(x)=x* for x<land let f(x)=2x for x>1.

Graph f.

Can f(1) be defined in such a way that 7 is continuous throughout

the x axis?
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3.3. The Maximum-Value Theorem and the_Intermediate-Value
Theorem

Continuous function have two properties of particular importance in
calculus: the “maximum-value” property and the “intermediate-value”
property.

The first theorem asserts that a function that is continuous throughout
the closed interval [a,b] takes on a largest value somewhere in the interval.

It also takes on a smallest value.

3.3.1. Maximum-Value and Minimum-Value Theorem

Let / be continuous throughout the closed interval [a,b]. Then there is
at least one number in [a,b] at which 1 takes on a maximum value.

That is, for some number ¢ in [a,b].

f(co)= f(x) forall x in [a,b].

Similarly, f takes on a minimum value somewhere in the interval.

To persuade yourself that this theorem is plausible, imagine sketching
the graph of a continuous function. As your pencil moves along the graph
from some point on the graph to some other point on the graph, it passes
through a highest point and also through the lowest point.

The maximum value theorem guarantees that a maximum value exists,
but it does not tell how to find it.

The maximum and the minimum values of a function are called its
extreme values or extrema.

To apply the maximum-value theorem, we must know that the function is
continuous and the interval is closed, that is contains its endpoints: It can be shown
that if either of these assumptions is deleted, the conclusion may be wrong.

3.3.2. Intermediate-Value Theorem

Let / be continuous throughout the closed interval [a,b]. Let m be any
number between f(a) and f(b). (That is, f(a)<m< f(b) If f(@)<f(b), Or
f@)=2m=> f(b) if f(a)> f(b)). Then there is at least one number ¢ in [a,b]
such that f(c)=m.

In other words, the intermediate value theorem reads:

A continuous function defined on [a,b] takes on all values between
f(a) and f(b). It asserts that a horizontal line of height m must meet the
graph of 1 at least once if m is between f(a) and f(b).
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When you move a pencil along the graph of a continuous function from
one height to another, the pencil passes through all intermediate heights.

1. If a continuous function defined on an interval is positive somewhere
in the interval and negative somewhere in the interval, then it must be 0 at
some number in that interval.

2. To show that two functions are equal at some number in an interval,
show that their difference is 0at some number in the interval.

Table 19
Basic definitions
English Russian Ukrainian
Intermediate IPOMEKYTOYHBIH, IPOMIXKHUH,
CpEIHUI CepeIHIi
Persuade yOeXKIIaTh IePEKOHYBATH
Extreme value, IKCTPEMYM EKCTPEMYM
extrema
Endpoint I'paHUYHBIC TOYKU MEKOB1 TOUKH
To attain JOCTUTaTh JOoCsraTu
To guarantee rapaHTUPOBATh rapaHTyBaTu
Task

2

. X +Xx . .-
1. Does the function ————— have a maximum value and a minimum

X +3x+7
value for x in [1,5]?

2. Show that the equation x° +3x* +x—2=0 has at least one root in the
interval [0,1].

3.Use the intermediate value theorem to show that the equation
3x” +11x* —5x =2 has a solution.

4. Let f(x)=§, a=-1, b=1, m=0. Is there at least one ¢ in [a,b] such

that f(c)=07?
If so, find ¢, if not, does this imply that the intermediate-value theorem
IS sometimes false?
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Chapter 4. THE DERIVATIVE

One of the most important concepts of calculus is the derivative. It has
a great number of applications.

First of all we will consider a few problems which at first glance may
seem unrelated. But a little arithmetic will quickly show that they are all just
different versions of one mathematical idea.

Problem Slope. What is the slope of the tangent line to the graph of
y=x* at the point P(x,,y,)?

The slope of nonvertical line equals the quotient 3;2;;’11 where

2
P(x,,»), B(x,,y,) are any distinct points on the line.

By the tangent line to a curve at a point Pon the curve shall be meant
the line through P that has the “same direction” as the curve at P.

In this case we formed a difference quotient,

difference of outputs and

difference of inputs
examined its limit as the change in the inputs was made smaller and smaller.
The whole procedure can be carried out for another problems, for
example seeking
- the velocity of a particle moving on a line,
the density,
the growth rate,
the rate of profit
the rate of change of any function.
The underlying common theme of these problems is the important
mathematical concept, the derivative of a numerical function.
Def. The derivative of a function at the number x. Let f be a function

that is defined at least in some open interval that contains the number x. If
WACE IO NAC))
h—0 h

f'(x). The function is said to be differentiable at x.

Def. Velocity and speed of a particle moving on a line. The velocity at time
¢ of an object whose position on a line at time ¢ is given by £(¢) is the derivative
of fattime t. The speed of the particle is the absolute value of the velocity.

Def. Density of material. The density at x of material distributed along a
line in such a way that the left-hand x centimeters have a mass of f(x) grams is
equal to the derivative of  at x.

exists it is called the derivative of f/ at x and is denoted
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4.1. The derivative and continuity. Antiderivatives
If fis differentiable at each number x in some interval, it is said to be

differentiable throughout that interval.
Theorem. If 1 is differentiable at a, then it is continuous at a.

Def. If f and F are two functions and f is the derivative of F', then
F is called an antiderivative of f.

Table 20
Basic definitions
English Russian Ukrainian
Slope HaKJIOH HaXHJIT
Tangent KacaTelbHasl, TAHT€HC JOTHUYHA, TAHT€HC
Secant CEKYIIIasi, CeKaHC ciuHa, CEKaHC
Differentiable | nuddepenupyemsrii auQepeHinoBHUN
Velocity, speed CKOPOCTb MIBUJIKICTh
Particle YacTHILA yacTKa
Density [UIOTHOCTD [JIBHICTH
To distribute pacnpeesaTh PO3IOJIISTH
Rate TeMI TEMII
Antiderivative nepBooOpazHas nepBicHA
Change in the | mpupaienue GyHKIUH PUPICT PYHKIIIT
function

Task
1. Let f(x)=x%.
a) Graph 1.
b) On the graph show x,x+ Ax,Ax, f(x), f(x+ Ax) and Af for x=2 and

Ax=0,3.
2. How many different antiderivatives does the function f(x) have?

4.2. The Derivatives of the Sum, Difference, Product and Quotient

Consider methods for differentiating functions. Before developing the
methods, it will be useful to find the derivative of any constant function.

Theorem 1. The derivative of a constant function is 0:¢'=0.

This theorem is no surprise: Since the graph of f(x)=c is a horizontal

line, it coincides with each of its tangent lines.
Also, if we think of x as time and f(x) as the position of a particle,
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Theorem 1 implies that a stationary particle has zero velocity.

Theorem 2. If U and ¥ are differentiable functions, then so is U +V .
Its derivative is given by the formula U +v) =u'+V".

Similarly, U -v)y=u'-v'.

Theorem 2 extends to any finite number of differentiable functions.

The following theorem concerns the derivative of the product of two
functions. The formula is more complicated than that for the derivative of the
sum.

Theorem 3. If U and ¥ are differentiable functions then so if UV . Its
derivative is given by the formula uv) =uv +uv'.

The theorem asserts that the derivative is the first function times the
derivative of the second plus the second function times the derivative of the
first.

By Theorem 3 (cf) =cf’, where cis a constant, that is a constant factor
can go past the derivative symbol.

Theorem 4. If uand vare differentiable functions, then so is u/v and

(%)’:VUV_QUV where, vV isnot 0.

4.3. Composite Functions and the Chain Rule

If / and g are differentiable functions, is the composite function
flIg(x)] also differentiable? If so, what is its derivative? More concretely: If

y=f(U) and U =g(x), then yis a function of x. How can we find dydx?

The Chain Rule. If yis a differentiable function of u, and u is a
differentiable function of x, then y is a differentiable function of x and

b _d du

dx du dx’

That is, derivative of y with respect to x equals derivative of y with

respect to U times derivative of U with respect to x.
The chain rule extends to a function built up as the composition of three
or more functions.
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Table 21
Basic definitions

English Russian Ukrainian
Differentiating | nmuddepenupoBanme IudepeHIiloBaHHs
Stationary CTAaIlMOHAPHBIN CTaIliOHAPHUHA
To go past the BBIHECTH 3a 3HAK BUHECTH 3a 3HAK
symbol
Composite CJIIOKHBIN CKJIaJHUN
Chain LETb JIAHLFOT
To allege TIPUTTACHIBATH, TIPUITHCYBATH,
YTBEPXKIAATh FOJOCIOBHO CBEPJKYBaTH
T0JIOCIIIBHO
Task

1. Tell what is wrong with this alleged proof that 2=1.

Observe that x* = xx=x+x+...+x (x times).

Differentiation with respect to x yields the equation 2x=1+1+...+1
(xts) . Thus 2x=x. Setting x =1 shows that 2-=1.

2. Let f and g be differentiable functions. Shows that

a) (fo) _ . ¢

f g

fg
f/\
b) (A):f' g’
g

oo

3. Find an equation of the tangent line to the curve y=x’-2x> at
1,-1).

4.4. Applications of the derivative. Rolle’s Theorem and the Mean-
Value Theorem

Let / be a differentiable function defined at least on closed interval [a,b].
Because it is differentiable it is necessarily continuous. Hence the function f must
take on a maximum value for some number ¢ in [a,b]. That is, for some number ¢
N [a,b] f(c)>f(x) forall x in [a,b]. What can be said about f’(c)?

First, if ¢ is neither a no b, that is ¢ is in the open interval (a,b), it
seems likely that « tangent to the graph at (c, f(c)) would be parallel to the
x axis, in which case f'(c)=0.

If, instead, the maximum occurs at an endpoint of the interval, at aor at
b, the derivative at such a point need not be 0.
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4.5. Theorem of the Interior Extremum

Let / be « function defined at least on the open interval (a,b). If f
takes on a extremum value at a number ¢ in this interval and if 7'(c) exists,
then f'(c)=0.

Def. A line segment joining two points on the graph of a function 1 is
called a chord of .

Assume that a certain differentiable function f has a chord parallel to

the x axis. It seems reasonable that the graph will then have at least one
horizontal tangent line.

4.6. Rolle’s Theorem

Let / be a continuous function on the closed interval [a,b] and have a
derivative at all x in the open interval (a,b). If f(a)= f(b), then there is at
least one number ¢ in (a,b) such that f'(c)=0.

Rolle’s theorem asserts that if the graph of a function has a horizontal
chord, then is has a tangent line parallel to that chord. The mean-value
theorem is a generalization of Rolle’s theorem, since it concerns any chord of
f, not just horizontal chords. In geometric terms, the theorem asserts that if

you draw a chord for the graph, then somewhere above or below that chord
the graph has at least one tangent line parallel to the chord.

4.7. Mean-Value theorem

Let /' be a continuous function on the closed interval [a,b] and have a
derivative at every x in the open interval (a,b).Then there is at least one

number cin the open interval (a,b) such that f'(c):M.

Corollary 1. If the derivative of a function is 0throughout an interval
then the function is constant throughout that interval.

Corollary 2. If two functions have the same derivatives throughout an
interval, then they differ by a constant. That is, if #'(x)=g'(x) for all x in an
interval, then there is a constant csuch that f(x)=g(x)+c.

Corollary 3. If f is continuous on [a,b] and has a positive (negative)
derivative on the open interval (a,b), than f is increasing (decreasing) on the
interval [a,b].
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Basic definitions

English Russian Ukrainian
To occur HMETh MECTO, MaTH MicCIIE,
CIIy4aThCs, TPAILISITHCA,
[TOIa1aThCs IOTIAIaTHCS
Interior BHYTPEHHUI BHYTPIITHIH
Chord Xxopaa Xxopjaa
Mean-value TeopeMa O CpeIHEM TeopeMa Ipo
theorem 3HAYE€HUH CepeIHE 3HAUYCHHS
Generalization 00001IEeHNE y3araJbHCHHS
Corollary 3aKJII0YCHHE, BHCHOBOK
CIIEJICTBHE, BBIBOJ]

Task

1. Consider the function f(x)=x* only for xin [-12].
graph the function f(x) for xe[-1,2].
what is the maximum value of f(x) for xin the interval

a)
b)
[-1,2]7?
c)
d)
e)

does f'(x) exist at the maximum?
does f'(x) equal 0 at the maximum?
does f'(x) equal 0 at the minimum?

2. Consider the function f(x):i2
X

a)
b)

c)
d)

3. Using

graph f(x):i2 for x in [-11].
X

show that f(-1)=f@).
Is there a number ¢ in (-1,1) such that f'(c)=07?
Why does this function not contradict Rolle’s theorem?

f(x)=cos”3x +sin’ 3x is a constant. Find the constant.

Table 22

Corollary 1 of the mean-value theorem show that

4.8. Using the derivatives and limits when graphing a function

We’ll consider how to use the derivative and limits to help graph a
function. Of particular interest will be this questions:
Where is the derivative equal 0?

Where is the derivative positive? Negative?

How does the function behave for | x| large?
Def. Critical number and critical points. A number cat which f'(c)=0
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is called a critical number for the function f. The corresponding point
(¢, f(c)) on the graph of 7 is a critical point on that graph.

Def. Relative maximum (local maximum). The function f has a
relative (local) maximum at the number cif there is an open interval (a,b)
around ¢ such that f(c)> f(x) for all x in (a,b) that lie in the domain of f.

A local or relative minimum is defined analogously.
Def. Global maximum. The function f has a global (absolute)

maximum at the number ¢ if f(c)> f(x) for all x in the domain of . A

global minimum is defined analogously.

By the theorem of the interior extremum, there is a close relation
between a local extremum and critical points for a differentiable function. If a
local extremum occurs at a number ¢ that lies within some open interval
within the domain of f, then f'(c)=0. This means that cis a critical number.

However, a critical point need not be a local extremum.
To determine whether a function has a local extremum at c, it is
important to know how the derivative behaves for inputs near c.

4.9. First—derivative test for local maximum at x=c

Let / be function and let ¢ be number in its domain. Assume that

numbers a and b exist such that a <c <5 and
1. f is continuous on the open interval (a,b).

2. f is differentiable on the open interval (a,b), except possibly at c.
3. f'(x) is positive for all x<cin the interval and is negative for all

x> cin the interval.
Then f has a local maximum at c.

A similar test, which “positive” and “negative” interchanged, holds for
a local minimum.

4.10. Higher derivatives
If y= f(¢) denotes position on a line at time ¢, then the derivative %

equals the velocity, and the derivative of the derivative, that is %(%) equals

the acceleration.
Most functions f met in applications of calculus can be differentiated

repeatedly.
Def. The derivatives 7 (x) for n>2 are called the higher derivatives
of f and are equal to derivative of (n—1) th derivative.
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Basic definitions

Table 23

English Russian Ukrainian
Relative (local) | oTHOCHTENBHEII BiTHOCHHUI
extrema (JIOKQJIbHBI) (JiokanbHUN)
CKCTPEMYM CKCTPEMYM
Higher MIPOU3BOIHBIC ITOX1/THI BUIIUX
derivatives BBICILINX HOPSIKIB
HOPSIKOB
Acceleration YCKOpPEHHUE IPUCKOPCHHSI
Task

1. Find the critical numbers of the given function and use the first —
derivative test to determine whether a local maximum, a local minimum, or
neither occurs there.

a) 3xt +x°.
2
b) Z —Inx.
2
c) (x-D*.
d) x*-e™.
2. Graph the given function, showing any intercepts, asymptotes,
2
critical points, or local or global exterma x2 +j.
x J—

3. Find all functions f(x) such that f® (x)=0 for all x.

4.10.1. Concavity and the Second Derivative

Assume that #"(x) is positive for all x in the open interval (a,b).
Since f" is the derivative of f', it follows that s' is an increasing

function throughout the interval (a,b). In other words, if x increases, the

slope of the graph of y= f(x) increases as we move from left to right on

that part of the graph corresponding to the interval (a,b). The slope may

increase from negative to positive values, or the slope may be positive
throughout (a,b) and increasing, or the slope may be negative throughout

(a,b) and increasing.

Def. Concave upward. A function f whose first derivative is increasing

throughout the open interval (a,b) is called concave upward in that interval.

It can be proved that where a curve is concave upward it lies above its

tangent lines and below its chords.
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Def. Concave downward. A function f whose first derivative is
decreasing throughout an open interval (a,b) is called concave downward.

Where a function is concave downward, it lies below its tangent lines
and above its chords. The sense of concavity is a useful tool in sketching
the graph of a function. Of special interest is the presence of a point on the
graph where the sense of concavity changes. Such a point is called an
inflection point.

Def. Inflection point and inflection number. Let /' be a function and let «

be a number. Assume that there are numbers » and c¢such that » <a < ¢ and
1. /' is continuous on the open interval (b,¢).

2. 1 1s concave upward in the interval (b,a) and concave downward in
the interval (a,c), or vice versa.
The point (a, f(a)) is called an inflection point or point of inflection.

The number « is called an inflection number. Observe that if the second
derivative changes sign at the number «, then « is an inflection number.

If the second derivative exists at an inflection point, it must be 0. But
there can be an inflection point even if /" is not defined there.

4.10.2. The Second Derivative and local Extrema

Let a be a critical number for the function f and assume that f"(a)
happens to be negative. If f” is continuous in some open interval that
contains «, then f”"(a) remains negative for « suitably small open interval
that contains «. This means that the graph of f is concave downward near
(a, f(a)), hence lies below its tangent lines. In particular, it lies below the
horizontal tangent line at the critical point(a, f(a)). Thus the function has a

relative maximum at the critical number «.
Theorem. Second — derivative test for relative maximum or minimum.
Let / be a function such that 7'(x) is defined at least on some open interval

containing the number «. Assume that f"(a) is defined. If
f'(a)=0, f"(a)<0then 7 has a local maximum at «. Similarly, if f'(a)=0 and
f"(a) >0, then f has a local minimum at a.
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Basic definitions

English Russian Ukrainian
Concavity BOTHYTOCTh YBITHYTICTh
Concave BOTHYTBIN BBEPX YBITHYTHUM
upward HAropy
Concave BOTHYTBIM BHU3 | YBITHYTHH YHU3
downward
Inflection U3MCHCHHUE 3MiHa (TIeperuH)
(meperu0)
Sense CMBICI, CEHC, 3HAUCHHS
3HAYCHUE
Presence IPUCYTCTBUE MIPUCYTHICTH
Extent pasmep, po3Mip,
POTSKEHHOCTD JOBXKHHA
Task

Table 24

1. Sketch the general appearance of the graph of the given function
near (1,1)on the basis of the information given assume that f, 7', 7" are

continuous.

a) fO=1, f'(H=0, ["H)=1;

b) fW=1, f/1)=0, f')=-1;
c) f(H=1, f')=0, £"(1)=0 (sketch four possibilities).
2. Graph the functions, showing any relative maxima, relative minima,

and inflection

a) 3x°-
2
b) -+

points.
5x*;
|

X
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4.11. General Procedure for Graphing a Function

Table 25

General Procedure for Graphing a Function

Calculations

Geometric Meaning

lim f(x) is infinite

xX—a

Domain 1. Find where f(x) is Find horizontal extent of
defined graph.

Intercepts 2. Find £(0) and the Find where graph crosses
values of x for which | the axes.
f(x)=0

Critical 3. Find where Find where the tangent

numbers f'(x)=0 line is horizontal.

Increasing, 4.Compute f(x) at all Data needed for critical

decreasing critical numbers points.

5. Find the values of x Find where graph goes up
for which  f'(x) is|and where it goes down as
positive and those for pencil moves to the right.
which f7(x) is negative.

Tilted 6. Eind liml™ _x Find tilted asymptote
asymptotes x>w X y =kx+b
and lim(f (x) - kx)

Horizontal 7. Find lim f(x) and Find horizontal
asymptotes . e asymptotes  or eneral
Y lim £ (x) be)rlwa\?ior when | x| is Igarge.
Vertical 8. Find the values of a Find vertical asymptotes.

asymptotes where lim+ f(x) or

Concavity and
inflection
points

9. Find the values of x
for which  f"(x) is
positive and those for
which f"(x) is negative.
Note where it changes
sign

Find where the graph is
concave upward and where it
is concave downward. Note
inflection points.

10. Sketch the graph
showing intercepts, critical
points, asymptotes, local
and global maxima and
minima, and inflection
points.
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4.12. Implicit Differentiation

Sometimes a function y = f(x) is given indirectly by an equation that
relates x and y. It is said to describe the function implicitly.

It is possible to differentiate a function given implicitly without having to
solve for the function and express it explicitly. An example will illustrate the
method, which is simply to differentiate both side of the equation that defines
the function implicitly. This procedure is called implicit differentiation.

The problem could also be solved by differentiating explicit function.
But the algebra involved is more complicated.

4.13. The Differential

The applied sciences are greatly concerned with the errors that may
occur in measurements. Let y = f(x) be a differentiable function. Then by
the definition of a derivative, Ay/Ax is a good approximation of f'(x) when
Ax is small. But on the other hand when Ax is small, the derivative f'(x) isa
good estimate of Ay/Ax.

Def. Let y = f(x) be a differentiable function. Then f'(x)Ax is called
the differential of / and is denoted df or dy:

dy=f'(x)=Ax.

The differential can also be viewed geometrically. A very short piece of
the graph around a point p, of a differentiable function, looks straight and

closely resembles a short segment of the tangent line to the graph at p.
Thus the differential 7'(x)Ax represents vertical change along the tangent line.

The differential can be used to estimate the value of a function at the
input x + Ax in terms of information at x.

How to use a differential to estimate an output of a function

To estimate 1 (b)

1. Find anumber a near b at which f(a) and f'(a) are easy to calculate.
2. Find Ax=b-a, Ax may be positive or negative.
3. Compute f(a)+ f'(a)Ax. This is an estimate of f(b). In short

J®)= f(a)+(b-a)f'(a).

o1



Table 26
Basic definitions

English Russian Ukrainian
Implicit HESIBHBIN HESBHUIN
Explicit SIBHBIH, SIBHHH, ICBHUI
OonpeaeIEHHbIN
Task

1. Find dy/ dx at the indicated values of x and yin two ways:
explicitly (solving for y first) and implicitly.

a) x’y+xy’=12 at (3,1

b) x*-y*=3at(2))

2. Calculate the differentials, expressing them in terms of x and dx.

a) d(COS5X).

b) dv1+x*.
C) d(tanx’).
3. Use differentials to estimate the given quantities.

a) /103.

b)  Sin320 (warning: First translate into radians)
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Chapter 5. INDEFINITE INTEGRAL. DEFINITE INTEGRAL
IMPROPER INTEGRAL

5.1. Indefinite integral
5.1.1. The antiderivatives and the indefinite integral

Def. If F'(x) = f(x), then F(x) is an antiderivative of f(x).

If f(x) is a continuous function, then its antiderivative exists.

Theorem. If F(x) and G(x) are both antiderivatives of f(x) on an
interval [a,b], then there is a constant C such that

FX)=G(x) + C

Def. A set of all antiderivatives of f(x) is called an indefinite integral
and is denoted

JT(x)dx = F(x) + C

where f(x) is called the integrand.

The process of finding an antiderivative is called integrating.

Def. The graph of any antiderivative is called an integral curve.

Every formula for a derivative provides a corresponding formula for an
antiderivative.

Theorem. If /f(x)dx = F(x) + C , then /f(ax + b)dx =1/a F(ax +b) +
C for any constants a and b.

Theorem. If /f(x)dx = F(x) + C, then /f(u)du = F(u) +C.

Where u= ¢(x) is any differentiable function of x.

Table 27
Basic definitions
English Russian Ukrainian
Antiderivative nepBooOpasHas nepBiCHA
Indefinite HEOTPeICICHHBIN HEBHU3HAYCHHM
integral MHTETpal iHTeTpas
Integrand MOAUHTErpaIbHas MiIHTErpaibHa
byHKIUS byHKIIs
Integrating WHTETPUPOBAHUE IHTErpyBaHHS
Integral curve MHTETpaJibHas 1HTEerpajibHa KpuBa
KpHUBas
Task

1. Find dy/dx if y = /sin (x*)dx.
2*. Verify the equation by differentiation

2

) . 2X . 2 X
jx S|naxdx=—23|nax+—3cosax——cosax+C
a a a
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3. Compute the antiderivatives:
a)j@+exfdx;

dx .
b) '[\/18—2x2 ’

C)J- dx

7x+5"’

eX
d)IIIEﬂx.

5.1.2. The substitution method

The substitution technique changes the form of an integral to that of an
easier integral. It is the most commonly used technique of integration.

A substitution is worth trying in two cases:

1. The integrand can be written in the form of a product of a special
type: function of u(x) x derivative of u(x) for some function u(x).

2. The integrand becomes simpler when a part of it is denoted u(x).

In order to apply the substitution technique to find /f(x)dx look for a
function u = h(x) such that f(x) = g(h(x)) h'(x), for some function g, or more
simply, f(x)dx = g(u)du.

Then find an antiderivative of g and replace u by h(x) in this antiderivative.

It is important to keep in mind that there is no simple routine method
for antidifferentiation of elementary functions.

Theorem. The substitution method. Let g(u) be a continuous function
and let h(x) be a differentiable function. Assume that G(u) is an antiderivative
of g(u). Then G(h(x)) is an antiderivative of g(h(x))h'(x). That is, if
G(u)=/(u)du, then G(h(x))=/(h(x))h"(x)dx.

5.1.3. Integration by parts

The formula for the derivative of a product is a basis for integration by parts.

Theorem. Integration by parts. If U and V are differentiable functions,
then
AUdv = UV - Adu.

The key to applying integration by parts is the labeling of U and dV.
Usually three conditions can be met:

1. V can be found by integrating and should not be too messy.

2. dU should not be messier then U.

3. VdU should be easier than the original UdV.
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Basic definitions

Table 28

English Russian Ukrainian
Substitution METO/ METO]I
method MIOJICTAHOBKHU 1 ICTAaHOBKHU
Change of 3aMeHa 3aMiHa 3MIHHHX
variables epEeMEHHBIX
Label 0003HaueHUE MIO3HAYCHHS
Messy BBI3BIBAIONINH BUKJINKAIOYUU
3aTPyAHCHUS TPYAHOII
Integration by | uHTerpuipoBaHue | iHTErpyBaHHS
parts 10 4aCTsIM BpO3/pi0
Task

1. Use appropriate substitutions to find the antiderivatives

e” cos+t+1
a dx; b dt: C) | xcosx?dx.
)-[1+e2X ) I Vt+1 ) j

2*. Jack (using the substitution u = cosé) claims that /2cosésinédé =-
cos’d, while Jill (using the substitution u = sin®) claims that the answer is
sin’e.

Who is right ?

3. Find:

)] In (7x — 1)dx;

b) | (3x* — 3x) sin2xdx.

5.1.4. Integration by certain rational function. Integration of rational.
Functions by partial fractions

Any rational function can be written of the form %, where P(x) and
Q(x) are polynomials.

The algebraic technique known as partial fractions makes it possible to
integrate any rational function.

The technique of partial fractions depends on the result from advanced
algebra: every rational function can be expressed as a sum of a polynomial
and constant multiples of the three types of functions.

Since any polynomial and each of the three types of rational fractions
can be integrated, any rational function can be integrated.

To express P(x)/Q(x), where P(x) and Q(x) are polynomials, as the sum
of partial fractions, follow these steps:

Step 1. If the degree of P(x) is equal to or greater than the degree of
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Q(x), devide Q(x) into P(x) to obtain a quotient and a remainder:

P(x) —s(x)+ R(x)

Qx) Qx)

where the degree of R(X) is less than the degree of Q(x).

Step 2. If the degree of P(x) is less than the degree of Q(x), then
express Q(x) as the product of polinomials of degree 1 and 2, where the
second — degree factors are irreducible.

Step 3. If px + g appears exactly n times in the factorization of Q(x),
form the sum:

Ky + s +..+ ul
px+q  (px+q) (px+q)"
where the constant kq, k, , ... , k, are to be determined later.

Step 4. If ax® + bx + ¢ appears exactly m times in the factorization of
Q(x), then form the sum:

C,X+d, c,x+d, c,X+d,
et

ax’ +bx+c  (ax? +bx+c) (ax? +bx+c)"
where the constants ¢y, Cy, ..., ¢y and dy, d,, ...,d,, are to be determined later.

Step 5. Determine the appropriate coefficients, such that P(x)/Q(x) is
equal to the sum of all the terms formed in steps 3 and 4 for all factors of
Q(x) defined in step 2. That may be done by the following way, called
equating coefficients. It depends on the fact that if two polinomials are equal
for all x, than corresponding coefficients must be equal.

Table 29
Basic definitions
English Russian Ukrainian
Irreducible HECOKPATHMBIH, HECKOPOTHHI,
Recursive PEKYPCHTHBIM PEKYpPEHTHUI
Quotient JaCTHOE yacTKa
Remainder OCTaTOK ocraya
Factorization pa3iioXeHHE Ha pO3KJIaIaHHs Ha
MHOKHUTEITH MHOKHHKH
Appropriate COOTBETCTBYIOIINI BIJIOBIJTHUI
Task
1. Compute the integral:
a J~ —3X— 1dX; b)J-ZX +4 dx:
x+1 X* +2X

2%, a) erte x* + x*+ 1 as the product of irreducible polinomials of
second degree.
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b) Compute j#
X

+x2+1

5.1.5. Integration of trigonometric functions

How to integrate any rational function of sin@ and cosf.

A polinomial in x and y is a sum of terms of the form ax'y’, where i and
J are nonnegative integers and a is a real number.

The quotient of two such polinomials is called a rational function of x
and y and is denoted R(x,y). If , in R(X,y), x and y are replaced by cosé and
sind, we obtain a rational function of cos@and siné.

The technique of a particular substitution reduces the integration
by any rational function of cos@ and siné to the integration of a rational
function of U.

Task
1. Find the integrals
a) '[cot3 xdx ;

b) .|.(sin0+2cos¢9)2dx :

) J~ déo

4c0s0+3sing

5.1.6. Integration of rational function of x and roots

First of all let’s consider trigonometric substitutions that turn certain
rational function of quantities that involve square roots into rational functions
of sin and cos0; these can be integrated by corresponding methods.

5.1.7. Trigonometric substitutions

A rational function of x and a’-x®, Ja?+x?, or Jx*-a?can be
integrated by using a trigonometric substitution. If the integrand is a rational
function of x and

Casel. +a*-x*; letx=asin6 (a>0,-n/2 <0< 7/2).

Case 2. a*+x*; let x=atan® (a>0, -n/2 <06 <n/2).
Case3. +x*-a’; let x=asecO ( a>0, 0<0<m, O=m/2).
The important thing that the square root sign disappears.

5.1.8. The algebraic substitution

Let n be a positive integer. Any rational function of x and Vax+b can be
transformed into a rational function of U by the substitution
U= Vax+b
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and thus can be integrated by partial fractions.
Evaluate the integrals:

x? s 1 ) . x* 1 x?
j1+x6dx,J'5|n 2xdx,jmdx,fx SInSXdX'-[x4—1dx'-[2&_i/§'jx—3dx

5.2. The Definite Integral
We introduce the definite integral by an area problem.

5.2.1. An Area Problem

Find the area of the region bounded by the curve y = f(x), the x axis,
and the vertical lines x =a and x = b. And let f(x) >0, xe[a,b].

First, the interval [a,b] is partitioned into n smaller Chapters, all of
equal length or not.

After the division into n Chapters is formed a number is selected in
each Chapter at which to evaluate f(x).

Then above each small interval draw the rectangle whose height is f(c;).

The next step is to evaluate the function f(x) at each c; and form the sum
with n summands — areas of all small rectangles.

It can be shown that the sums used to approximate the area, mass,
distance, or volume were all made the some way.

Def. The sum Z f(c, )Ax, is called the approximating sum for the function f(x)

in interval [a,b].

It is called a Riemann sum.

The larger n is and the shorter the Chapters are, the closer we would
expect these approximating sums to be the quantity we are trying to find.

Def. Mesh. The mesh of a partition is the length of the longest Chapter in the
partition.

Def. If f(x) is a function defined on [a,b] and the sum Zn:f(ci)Axi

approaches a certain number as the mesh of partitions of [a,b] shrinks toward
0, no matter how the sampling number c; is chosen, that certain number is
called the definite integral of f(x) over [a,b].

Area, distance, mass, volume, are just particular interpretations of the
definite integral.

Theorem. Existence of the definite integral. Let f be a continuous function

defined on [a,b]. Then the approximating sum Z f (c, )Ax, approaches a single
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b
number as the mesh of the partition of [a,b] approaches 0. Hence j f(x)Jdx exists.

Mean-Value Theorem for Definite Integrals. Let a and b be numbers,
and let f be a continuous function defined for x between a and b. Then there
IS a number ¢ between a and b such that

b

j f(xx= f(c)a-b)

a

Table 30
Basic definitions
English Russian Ukrainian
Definite integral OTIpe/ICTICHHBIN BU3HAYCHUH 1HTETpa
HUHTETpa
Area IJIOIIAIE TUIo1IIA
To partition pacuIeHATh, pa3eiiTh PO34JICHOBYBATH,
PO3IIIATH
To select BBIOMPATH BUOUpaATH
Sample oOpa3zery 3pa3oK
Height BBICOTA BHCOTA
Rectangle PSIMOYTOJIBHUK PSIMOKYTHUK
Summand cliaraeMoe JOJTAHOK
Approximating SUm | wuWHTerpajbHas cymma IHTerpaJibHa CyMa
Mesh Mepa Mipa
Task

1. True or false:
a)  Every elementary function has an elementary derivative.
b)  Every elementary function has an elementary
antiderivative.

5.2.2. The fundamental theorems of calculus

There is an intimate connection between the definite integral and the
derivative. This relationship provides a tool for computing definite integrals.
It is expressed in the fundamental theorems of calculus.

First Fundamental Theorem of Calculus. If f is continuous on [a,b]

and if F is an antiderivative of f, then j f(xx=F(b)-F(a).

Second Fundamental Theorem of Calculus. Let f be continuous on

X

an open interval containing the interval [a,b]. Let G(x)zj f(tdt for a <x <h.

a
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Then G is differentiable on [a,b] and its derivative is f; that is, G'(x) = f(x).
Corollary. Let f be continuous on an interval [a,b]. Then f is the
derivative of some function.
The First Fundamental Theorem is abbreviated by the letters FTC. It
provides a tool for computing many definite integrals. If an antiderivative of f
is elementary, then FTC is of use. But there are elementary functions, for

instance, sinx’,v1+x* , which are not derivatives of elementary functions. On
these cases, it may be necessary to estimate the definite integral by an
approximating sum.

Although there are formulas for computing definite integrals, do not
forget that a definite integral is a limit of sums, because:

1. In many applications in science the concept of the definite integral is
more important than its use as a computational tool.

2. Many definite integrals cannot be evaluated by a formula. Some of
the more important of these have been tabulated to several decimal places
and published in handbooks of mathematical tables.

5.2.3. The substitution method in the definite integral

Let f be a continuous function on a interval [a,b], U = h(x) be a
differentiable function on the same interval, and g be a continuous function
such that f(x)dx g(uwdu; thatis f(x) = g(h(x))h'(x).

Then I X )dx = j)g )du

Table 31
Basic definitions
English Russian Ukrainian
Fundamental OCHOBHOM OCHOBHHH
Intimate OU3KUIA, TECHBIN OM3BKUM, TICHUH
Connection, CBSI3b 3B'SI30K
relationship
Tool CpENCTBA, METOJ] 3aco0M, METOT
Task
1. Use a substitution to evaluate the definite integral:
% In(x 2x% +1
I dx Icos@sm&d@ j dx —dx
1 x> +2 1 1+¢€?

60



2. Evaluate the integrals by integration by parts:

1 1 4
Ixzezxdx Jtan‘lxdx Jxln3xdx
0 0 1

5.2.4. Applications of the Definite Integral

It was shown that the area of a plane region bounded by the curve y =
f(x), (f(x)>0), the x axis, and the vertical lines x =a and x = b is equal to

Area = i f (x)dx

Let f and g be two continuous functions such that f(x) > g(x) for all x in
the interval [a,b]. Let R be the region between the curve y = f(x) and the
curve y = g(x) for x in [a,b].

Inspection of figure shows that the area of R is given by

Area = i[f(x)— g(x)]dx

5.2.5. Computing volume by parallel cross Chapters

Let's consider a spatial region, a "solid", bounded by the given surface.
Let A(x) be an area of the plane region inside the solid, that is, the cross
Chapteral area.

To find the volume of some solid, follow these steps:

1. Choose an x axis.

2. For each plane perpendicular to that axis, find the area of the cross
Chapter of the solid made by the plane. Call this area A(x).

3. Determine the limits of integration, a and b, for the region.

b

4. Evaluate the definite integral [ A(xjx.
Most of the effort is usually spent in finding the integrand A(X).

5.2.6. Solid of revolution

A lot of solids can be viewed as the solid obtained by revolving the
plane region about some axis. This is a special case of a "solid of revolution”.
Let R be a region in the plane and L a line in the plane. Assume that L does
not meet R at all or that L meets R only at points of boundary. The solid
formed by revolving R about L is called a solid of revolution. Let us see how
to compute the volume of a solid of revolution when R is region under the
curve y = f(x) and above the interval [a,b] and L is the x axis.

To find the volume, first find the area A(x) of a typical cross Chapter
made by a plane perpendicular to the x axis corresponding to the coordinate
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x. This cross Chapter is a disk of radius f(x). Thus A(x) = #[f(x)].
Since the volume of a solid is the integral of its cross-Chapteral area,

we conclude that v = [ z[f(x)] dx.

a

Table 32
Basic definitions
English Russian Ukrainian
application TIPHJIOJKECHUE J0JIATOK
plane region Iockas purypa iocka ¢irypa
cross Chapter TIOTIepeYHOe MIOTIePEYHHIA
CCUCHUE nepepis3
spatial IPOCTPAHCTBEHHBIN IIPOCTOPOBHIH
solid TEJ0 TiJI0
solid of revolution TEJIO BpPAIICHUS TiJI0 OOepTaHHS
Task

1. Sketch the finite regions bounded by the given curves. Then find
their areas.

a) y=x°, y=3x-2.

b) y=2x> y=x+1.

)*x=y’, x=3y-2

2. A region R in the plane is revolved around the x axis to produce a
solid of revolution. In each case:

a) draw the region,

b) draw the solid of revolution,

c) draw the typical cross Chapter,

d) set up a definite integral for the volume,

e) evaluate the integral.

3. Risbounded by y = Jx, the x axis, x =1, x = 2,

4. Risbounded byy=x*andy = x°.

5.3. Improper Integrals
5.3.1. Improper Integrals: Interval of Integration Unbounded
Def. Convergent improper integral. Let f be continuous for x >a. If

b
|Lr2jf(x)dx exists, the function f(x) is said to have a convergent improper

integral from a to cc. The value of the limit is denoted by T f(x)dx.

Def. Divergent improper integral. Let f be a continuous function. If
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lim j x)dx does not exist, the function f is said to have a divergent improper

integral from a to oo.

An improper integral j x)dx can be divergent without infinite.

The improper integral T f(x)dxis defined similarly.

—00

If ahmj x)dxexists, the improper integral is said to be convergent. If it

does not exist, then the improper integral is said to be divergent. To deal

with improper integrals over the entire x axis, define j x)dx to be the sum

j (x)dx+ j x)dx which will be called convergent if both of them are

convergent.

Sometimes j x)dx can be shown to be convergent by comparing it to

another improper integral Tg(x)dx

Theorem 1. Comparison test for improper integrals.
Let f(x) and g(x) be continuous functions for x >a. Assume that 0 <f(x)

0 o0

< g(x) and that j g(x)dxis convergent. Then j f(x)dx is convergent and

a a

T f(x)dx < ]8 g(x)dx

Theorem 2. Assume that f(x) is continuous for x > a, and assume that

o0

[If(x)dx is convergent. Then j x)dx is convergent.

a

5.3.2. Improper Integrals: Integrand Unbounded
Def. Convergent and divergent improper integrals. Let f be continuous

at every number in [a,b] except a. If I|m_|' x)dx exists, the function f is said

to have a convergent improper integral from a to b. If limit does not exist, the
function f is said to have a divergent improper integral from a to b. In a

similar manner, if f is not defined at b, define j x)dx as ||mj x)dx , if this

limit exists.
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Chapter 6. DIFFERENTIAL EQUATIONS

6.1. Separable differential equations

An equation that involves one or more of the derivatives of a function
Is called a differential equation.

A solution of a differential equation is any function that satisfies the
equation. To solve a differential equation means to find all its solutions.

The order of a differential equation is the highest order of the
derivatives that appear in it.

We examine a special and important type of first-order differential
equation, called separable. After showing how to solve it, we will apply it to
the study of natural growth and decay and to inhibited growth.

A separable differential equation is one that can be written in the form

dy_ 1) (6.2)
dx g(y)

where f(x) and g(y) are differentiable functions. Such an equation can
be solved by separating the variables, that is, bringing all the x's to one side
and all the y's to the other side to obtain the following equation in

differentials:
g(y) dy = f(x) dx.
(6.2)
This is solved by integrating both sides:
[a(y)dy =] f(x)dx+C
(6.3)
Some examples will illustrate the technique.

EXAMPLE 1. Solve ¥ =2X  (y>0) .
dx 3y

SOLUTION. Separating the variables, we obtain
3y dy = 2x dx.
Thus ijdy = j2xdx +C

2

or 3%:x%c. (6.4)

Equation (6.4) determines y as a function of x implicitly. Each choice
of C produces a solution.
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EXAMPLE 2. Solve the differential equation
dy 2y

— y>0
dx X (x.y>0)

(6.5)
SOLUTION. At first glance the equation does not appear to be of the
form in Eqg. (6.1). However, it can be rewritten in the form

dy (/%)
dx (1/2y)’

so it has the form of a separable differential equation. Separation of the
variables is not hard:

dy _2y dy_2y
dx x  dx x
Hence j%:j%+c or

1
—Iny=Inx+C
2 ¢ "
(6.6)
(since x, y assumed >0, In|x|=Inx, In|y|=Iny).

In this case, let us solve for y explicitly:
Iny=2Inx+2C

y =e?™+?¢ definition of natural logarithm
y =e*™e*® basic law of exponents

y = (e"*)?e*° power of a power

y = x°e°.

Since e* is an arbitrary positive constant, call it k. Thus the most
general solution of Eq. (6.5) is

y = kx?
(6.7)
As a check on this solution, see if y=kx* satisfies Eq. (6.5):
2
2kx = 2K :
X

Yes, it checks.

The solution of a separable differential equation (in fact, any first-order
differential equation) will generally involve one arbitrary constant. Each

choice of that constant determines a specific function that satisfies the
differential equation.
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6.2. The Differential Equations of Natural Growth and Decay

The next example treats a differential equation that is important in the
study of growth and decay. It arises in such diverse areas as biology, ecology,
physics, chemistry, and economic forecasting.

EXAMPLE 3. Solve the differential equation

dy _
&—ky (y>0),

(6.8)
where K Is a nonzero constant.
SOLUTION. Separation of the variables yields

ﬂ:k-dx
y

ngzjkdx+c
y
y — ekx+C
y=e¢.e",
Denote the arbitrary positive constant e by the letter A. Then
y = Aek
(6.9)
The most general solution of dy/dx=ky is y = Ae".

6.3. Linear differential equations with constant coefficients

This Chapter treats a type of differential equation that many
engineering and physics students may meet even before they take a D.E.
course. It is intended to serve as a reference.

The differential equation % =a-y, or equivalently,

(o)
e y=0 (6.10)

was solved ealier. Any solution has to be of the form y=A.e** for some
constant A. This Chapter is concerned with generalizations of Eg. (6.10).
First, we consider differential equations of the form

dy  o.y=
o T2 y=f(X), (6.11)

where a is a real constant and f(x) is some function of x. [Equation
(6.10) is the special case where f(x)=0]. Equation (6.11) is called a first-

order linear differential equation with constant coefficients. Second, we
consider the second-order equation
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J+b e y=f(X) (6.12)
dx2 dx
where b and c are real constants. For some b and c, solving Eq. (6.12)
may use complex numbers even though the solution will be a real function.
An engineer or physicist will meet Eq. (6.12) in the form
d2q

dg ¢
L- dt—2+R dt+——V Sant

in the study of electric currents. Here q is a charge that varies with
time, dgldt is current, Vsinawt describes an applied voltage, R is resistance, L
Is inductance, and C is a constant describing the capacitor. They also meet
Eq. (6.12) in the study of motion in the form
d?x . dx
dt2 dt
Here x describes the location of a particle moving on a line, F,sinwt is

m- +k-x=F,sinwt.

an applied force, b-% describes a damping effect, k- x describes the force of

a spring, and m is the mass.
Imagine for the moment that you have found a particular solution Yp

of Eqg. (6.11) and a solution Yy, of the associated homogeneous equation
obtained from Eq. (6.11) by replacing f(x) by 0, (The homogeneous case)

g;g+a.y:o (6.13)
A straightforward computation then shows that y_ +y, is a solution of

Eq. (6.11), as follows:

d
di(yp+y1)+a-(yp+y1) dyx ?}’(Ha y,+a-y, =

_£%+a Yj (dlera yl)—f(X)JfO—f(X)
dx dx

Now, the function y =C-e ™ for any constant C, is a solution of Eq.
(6.13). Thus, if y, is a solution of Eqg. (6.11), then so is y, +C-e™. In fact,

each solution of Eq. (6.11) must be of the form y +C.e™. To see why,
assume that y_ andy both satisfy Eq. (6.11). Then

i (W oy )Y oo
dX(y y ) (y _yp)__(dX‘Fa YJ [dx +a-y j_f(x) f(X)_O

Thus y-vy,, being a solution of Eq. (6.13), must be of the form Ce™
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for some constant C. Thus y=y_ =Ce ™. These observations are summarized
in the following theorem.

Theorem 1. Let y_ be a particular solution of the differential equation

ay  a.y=
ot y=f(x).

Then the most general solutionis y=y_ +Ce™

EXAMPLE 1. Solve the differential equation %%3- y=12.

SOLUTION. One solution is the constant function y =4. The most
general solution is, therefore, y =4+Ce™** for any constant C.

Once a particular solution y, has been found, Theorem 1 provides the
general solution. Example 2 illustrates one technique for finding vy .

EXAMPLE 2. Find all solutions of the differential equation

Y y=sinx. (6.14)
SOLUTION. Start by guessing what a solution might look like. First
find one solution. Since f(x)=sinx, let us see if there is a solution of the

form y = Acosx+Bsinx, for some constants A and B. Substitution in Eq.
(6.14) yields

di(Acosx+ Bsinx) — (Acos x + Bsinx) =sin x.
X

So we want

—Asinx+ Bcosx— Acosx—Bsinx =sinx
or simply,

(—A—-B)sinx+ (B — A)cosx =sinX.
Choose A and B such that —~A-B=1 and B—A=0. It follows that
—~A-(A)=1or Az—%. Consequently,
1

1.
=—>C0SX—=sinx
Vs 2 2

Is a solution of EQ.(6.14), as may be checked by substitution in Eq.
(6.14).

The general solution of the homogeneous equation %—y:o IS

y =Ce”, so the general solution of Eq. (6.14)is vy :—%cosx—%sinx+Cex.

Example 2 uses the method of undetermined coefficients: Guess a
general form of the solution and see if the unknown constants can be chosen
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properly to yield a solution of the differential equation.
Before turning to solutions of Eq. (6.12), consider the special case
when f(x) is identically 0, the so-called homogeneous case.

Let us find all solutions of the homogeneous equation
2

y ,.dy
bh—= =0. 6.15
dszr derCy ( )

If y, and y, are both solutions of Eq. (6.15), a straightforward computation
shows that C,y, +C,y, is also a solution of Eq. (6.15) for any choice of constants
C, and C,. [Since Eq. (6.15) involves the second derivative of y, we expect the

general solution for y to contain two arbitrary constants.]
EXAMPLE 3. Solve

d’y . dy
~3-2 42y =0. 6.16
d?x der y (6.16)

SOLUTION. Recalling our experience with Eq. (6.10), we are tempted
to look for a solution of the form e for some constant k. Substitution of e
into Eq. (6.16) yields
d?(e*) _d(e")
-3
d?x dx
or
k?e® —3ke™ +2e* =0,
which is equivalent to
k? -3k +2=0. (6.17)
By the quadratic formula, k = 1 or k = 2. Thus y, =e* and y, =e* are
solutions of Eqg. (6.16). Consequently,
y=Ce* +C,e* (6.18)
is a solution of Eq. (6.16) for any choice of constants C,, and C,. (It
can be proved that there are no other solutions.)
The most general solution of the differential equation

+2(e*)=0,

d’y .dy
=Y =Y 49y=0 6.19
d?x dx+ y (6.19)

is of a different form. If we try y =e", we obtain

k’e —6ke™ +9e* =0

e“(k? +6k+9)=0

(k+3)2=0

k=-3

This gives only the solutions of the form y =Ce™**. However, a second-
order equation should possess a solution containing two arbitrary constants.
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Let us seek all solutions of the form y=v(x)Ce™*,

hoping to find some not of the form y =Ce™*.
Straightforward computations give

% =v(x)(=3e¥) +V'(x)e™* = -3v(x)e > +Vv/(x)e™>* and

d2y -3x ' -3x " -3x
W:9v(x)e —6v'(x)e™ +Vv'(x)e™".

Substituting into Eq. (3.19) yields

v(x)e ™ —6v'(x)e ™ +Vv"(x)e>* —18v(x)e > +6v'(x)e> +9v(x)e > =0

which simplifies to

v'(X)Ce™** =0,

hence to

V'(x)=0.

Therefore, v(x) =C, +C,x, and our general solution is

y=Ce > +C,xe™¥,

for arbitrary constants C,, and C,.

The key to the nature of the solutions of Eq. (6.15) lies in the associated
quadratic

Equation t? +bt+c=0 (6.20)

The type of solution to Eq. (6.15) depends on the nature of the roots of
Eqg. (6.20). There are three cases: two distinct real roots, a repeated root

(necessarily real), and two distinct complex roots. Each case will be
described by a corresponding theorem.

Theorem 2. If b® —4c is positive, Eq. (6.20) has two distinct real roots,
r, and r, .In this case, the general solution of Eq. (6.15) is
y=Ce¥ +C,e%. (6.21)
The proof that y=Ce"™ +C,e? is a solution is left to the reader.
Theorem 2 covers the differential equation (6.16).
EXAMPLE 4. Solve d—zy—Gd—y+9y=0.
dx  dx

SOLUTION. In this case, b*—4c =21, which is positive. The roots of
the associated quadratic equation are

I, = ki L +2\/Z and r, = i L _2\/2 :
The general solution of the differential equation is
’5“/2.)( 75+\/ﬁ.x

y=Ce > +Ce 2
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The next theorem concerns the special case when the associated
quadratic equation t* +b-t+c =0 has a repeated root, r.

Theorem 3. If b®> —4c=0, eq. (6.20) has a repeated root r. In this case,
the general solution of Eq. (6.15) is

y=Ce” +C,-x-e™=(C,+C,-x)-e™.
That y=(C,+C,-x)-e"™ is a solution is left to the reader to check by
substitution. Theorem 3 is illustrated by the solution of Eq. (6.19).
Theorem 4. If b® —4c is negative, Eq. (6.20) has two distinct complex roots
rL=p+i-q and r,=p—i-q. In this case, the general solution of Eq.
(6.15) is
y =(C,cosgx+C,singx)-e™. (6.22)
EXAMPLE 5. Find the general solution of the differential equation of
harmonic motion,
d’y
d?x

= —k?y, (6.23)

where K is a constant.
SOLUTION. Rewrite Eqg. (6.23) in the form

d2
d_23</ +k’y =0,
which has the associated quadratic equation t*+k*>=0. The roots of this
equation are 0+ki and 0—ki. By Theorem 4, the general solution of Eq. (6.23) is
y =C, coskx+C,sinkx.
Equation (6.23) describes the motion of a mass bobbing at the end of a
spring. The height of the mass at time x is y. Since the motion is oscillatory, it

is plausible that it is described by a combination of coskx and sinkx. If y, is

any particular solution of

d’ dy
and y* is a solution of the associated homogeneous equation (6.15), then
y, =y* is a solution of Eq. (6.24), as may be checked by a straightforward

calculation. Since we know how to find the general solution of Eq. (6.15), all
that remains is to find a particular solution of Eq. (6.24). This can often be
accomplished by a shrewd guess and the use of undetermined coefficients, as
illustrated by the following example.

EXAMPLE 6. Solve the differential equation

2
y dy
OIZX+&+2y:2x2+5. (6.25)
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Since 2x*+5 is a polynomial, let us seek a polynomial solution. If there
IS such a solution, it cannot have degree greater than 2, since the right-hand

side of Eq. (6.25) has degree 2. So try y=Ax*+Bx+C; hence y'=2Ax+B
and y"=2A. Substitution in Eq. (6.25) gives

2A+(2Ax+B)+2(Ax* + Bx+C)=2x"+5,

or  2AX*+(2A+2B)x+(2A+B+2C)=2x"+5.

Comparing coefficients gives2A =2,2 A+ 2B =0,and 2A + B + 2C
=5.ThusA=1,B=-1,and C=2.

Consequently, y, = x* —x+2 is a particular solution of Eq. (6.25).

Next, turn to solving the associated homogeneous equation

2
d—2§+j—§(’+2y:0. (6.26)
Here b = | and ¢ = 2, so b*-4c=-7. The roots of the associated
quadratic equation t* +t+2=0 are
_1i\/7___1+£i
2 2 2
By Theorem 4, the general solution of Eq. (6.26) is
X ﬁ X ﬁ

yx=Cge ? Cos——x+ C,e 2sin X
Putting everything together, we obtain the general solution of Eq. (6.25)
X ﬁ X \/7

y:xz—x+2+C1e20057x+C2e23in7x.

Guessing a particular solution of Eq. (6.24) depends on the form of f(x).
This table describes the most common cases:

Form of f(x) Guess for y,
A polynomial Another polynomial
e (k not a root of associated quadratic Ae®
equation)
xe* (k not a root of the associated quadratic (A + Bx)e™
equation)
e“singx or e“cosqgx (k +qgx notarootof | Ae™cosqgx+ Be*singx
the associated quadratic equation)

A complete handbook of mathematical tables includes several pages of
specific solutions for a much wider variety of functions f(x) that appear on
the right side of Eq (6.24).
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Chapter 7. EQUATIONS OF MATHEMATICAL PHYSICS

7.1. Basic types of equations of mathematical physics

The basic equations of mathematical physics (for the case of functions
of two independent variables) are the following second-order partial
differential equations:

I. Wave equation

o‘u , 0%
=a :
ot’ OX*

This equation is used in the study of processes of transversal vibrations
of a string, the longitudinal vibrations of rods, electric oscillations in wires,
the torsional oscillations of shafts, oscillations in gases and so forth. This
equation is an equation of hyperbolic type.

I1. Fourier equation for heat conduction

ou ,0%
—=a :
ot ox*

This equation is used in the study of processes of the propagation of
heat, the filtration of liquids and gases in a porous medium (for example, the
filtration of oil and gas in subterranean sandstones), some problems in
probability theory. This equation is the simplest of the class of equations of
parabolic type.

I11. Laplace equation

(7.1)

(7.2)

o’'u o
e v
OX? 8y2
This equation is invoked in the study of problems dealing with
electric and magnetic fields, stationary thermal state, problems in
hydrodynamics, diffusion. This equation is the simplest in the class of
equations of elliptic type.
In equations (7.1), (7.2), and (7.3), the unknown function u depends on
two variables. Also considered are appropriate equations of functions with a
larger number of variables. The wave equation in three independent variables
is of the form

o’'u L[ dou ou
=a + .
ot? ox> oy’

The heat-conduction equation in three independent variables is of the form

ou L(ou du
—=a + :
ot x> oy’

0. (7.3)
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Laplace equation in three independent variables has the form

o'u  ou  ou
+ + =0.
ox> oy* o1’

7.2. Deriving the equation of the vibrating string. Formulating the
boundary-value problem

In mathematical physics a string is understood to be a flexible and
elastic thread. The tensions that arise in a string at any instant of time are
directed along a tangent to its profile. Let a string of length | be, at the
initial instant, directed along a segment of the x-axis from 0 to I.
Assume that the ends of the string are fixed at the points x=0 and x=1.
If the string is deflected from its original position and then let loose; or if
without deflecting the string we impart to its points a certain velocity at
the initial time, or if we deflect the string and impart a velocity to its
points, then the points of the string will perform certain motions; we say
that the string is set into vibration. The problem is to determine the shape
of the string at any instant of time and to determine the law of motion of
every point of the string as a function of time.

Let us consider small deflections of the points of the string from the
initial position. We may suppose that the motion of the points of the string is
perpendicular to the x-axis and in a single plane.

The process of vibration of the string is inscribed by a single
function u(x,t). A point of the string with abscissa x has moved at time t.
Since we consider small deflections of the string in the x,u plane, we
shall assume that the length of an element of string is equal to its
projection on the x -axis. We also assume that the tension of the string at
all points is the same; we denote it by T-.

Consider an element of the string. Let us find the external forces
applied to the element MN (Fig.1).
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o+ Aax

)i ™~

e

v

X + AX X

Fig. 1. The action of forces on the element of the string

T sin(a+Aa)-T sina =T tan(a + Aa)-T" tana =
:T*[au(x +AXt) au(x,t)} _T- o*u(x+6- Ax’t)Ax T o’u(x,t)
OX OX oX? OX?

(hear, we applied the Lagrange theorem for the expression in the square
brackets).

In order to obtain the equation of motion, we must equate to the force
of inertia the external forces applied to the element. Let p be the linear
density of the string.

Then the mass of an x element of string, will be pAx. The acceleration

AX

2

of the element is ou

7

By d'Alembert's principle we will have

s 2 g O

e N - AX.

Canceling out Ax and denoting T a’, we get the equation of motion
Yo

o’u_ , 0
=a :

ot? ox’
This is the wave equation, the equation of the vibrating string. Equation
(7.4) by itself is not sufficient for a complete definition of the motion of a string.
The desired function u(x,t) must also satisfy boundary conditions that indicate

what occurs at the ends of the string and initial conditions, which describe the
state of the string at the initial time t =0 . The boundary and initial conditions are
referred to collectively as boundary-value conditions.

Let the ends of the string at x=0 and x=1 be fixed. Then for any t the
following equations must hold:

(7.4)
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u(0,t)=0, (7.5)

u(l,t)=0. (7.6)
These equations are the boundary conditions for the problem.

u(x,0)= f(x), (7.7)

ou

— =F(x). 7.8

i _o=F® (7.8)

Conditions (7.7) and (7.8) are the initial conditions.

7.3. Sollving of the equation of the vibrating String by the method
of separation of variables (the Fourier method)

The method of separation of variables (or the Fourier method) is typical
for solving of many problems in mathematical physics. Let it be required to
find the solution of the equation (7.4) which satisfies the boundary-value
conditions (7.5)-(7.6).

We shall seek a particular solution of equation (7.4) that satisfies the
boundary conditions (7.5) and (7.6) , in the form of a product of two
functions X (x) and T(t), of which the former is dependent only on x, and
the letter, only on t:

u(x,t)=X(x)-T(t). (7.9)

Substituting into equation (7.1), we get

X(X)-T"t)=a*X"(x)-T(t),
and dividing the terms of the equation by a®X - T we obtain
T" X’
a’T X

The left member of this equation is a function that does not depend on x,
the right member is a function that does not depend on t. Equation (7.10) is
possible only when the left and right members are not dependent either on x or
on t, that is, are equal to a constant number. We denote it by — A, where 1 <0.It
must be negative number to satisfy the boundary conditions (7.5) and (7.6). Thus,

T" X’
=" =4

a’T X

From these equations we get two equations:

X"+1-X=0,

T"+a’A-T =0.

The general solutions of these equations are

X(X) = A-cos+/A - x+ Bsin/4 - x, (7.11)

(7.10)
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T(t)=C-cos~/A-t+Dsin/A -t (7.12)

where A/B,C and D are arbitrary constants. Substituting the
expressions X (x) and T (t) into (7.9), we get

u(x,t) = (A-cosv4 - x+ Bsin4 - x)C - cosav/Z -t + Dsinav4 -t).

Now choose the constants A and B so that the conditions (7.5) and
(7.6) are satisfied. Since T(t)=0, the function X(x) must satisfy the
conditions (7.5) and (7.6) that is, we must have

X(0)=0, X()=0.

Putting the values x=0 and x =1 into (7.11), we obtain on the basis of
(7.5) and (7.6)

0=A-1+B-0

0=A-cosvA -l +BsinJa-I

From the first equation we find A=0. From the second it follows that

Bsinv/4-1=0.

B=0, since otherwise we would have X =0 and u=0, which
contradicts the hypothesis. Consequently, we must have

sinv/4 -1=0.
Whence
ﬂ:”l_” (n=12,.) (7.13)

(we do not take the value n=0, since then we would have X =0 and
u=0). And so we have

X=B-sinn|—7[x. (7.14)
These values of A are called eigenvalues of the given boundary-value

problem. The functions X (x) corresponding to them are called eigenfunctions.
It follows from (7.12)

T(t):c:cosa’:—”HDsina’:—”t (N=12,..). (7.15)

For each value of n, hence for every A, we put the expressions (7.14)
and (7.15) into (7.9) and obtain a solution of equation (7.4) that satisfies the

boundary conditions (7.5) and (7.6). We denote this solution by u_(x,t):
u, (x,t) :sinnl—”x-(cn cosar;—ﬂt +D, sinar;—ﬂt).

For each value of n we can take the constants C and D and thus write
C, and D, (the constant B is included in C_and D, ). Since equation (7.4) is

linear and homogeneous , the sum of the solutions is also a solution, and
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therefore the function represented by the series
u(x,t) = iun (x,t) or
n=1

u(x,t)=§;(0n cosar;—ﬂt+Dn sinar;—ﬂtjsinnl—ﬂx (7.16)

will likewise be a solution of the differential equation (7.4), which will
satisfy the boundary conditions (7.5) and (7.6). Series (7.16) will obviously
be a solution of equation (7.4) only if the coefficients C_ and D, are such that
the series converges and that the series resulting from a double term-by-term
differentiation with respect to x and to t converges as well.

This solution (7.16) should also satisfy the initial conditions (7.7) and
(7.8). We may do this by choosing the constants C_ and D, . Substituting

t =0 into last equation, we get [see condition (7.7)]:
f(x) :icn sinnl—ﬁx.

If the function f(x) is such that in the interval (0,1) it may be

expanded in a Fourier series, the last equality will be fulfilled if we put
|
C. :%j f (x)sin”l—”xdx. (7.17)
0
We then differentiate the terms of the function u(x,t) with respect to t
and substitute t =0. From condition (7.8) we get the equation
anzr . nrx

F(x):iDHTsinTx.
n=1

We define the Fourier coefficients of this series
|
D :ij(p(x)sinnl—ﬂxdx. (7.18)

n

anr

Thus, we have proved that the series (7.16), where the coefficients C,
and D, are defined by formulas (7.17) and (7.18) [if it admits double
termwise differentiation], is a function u(x,t), which is the solution of
equation (7.4) and satisfies the boundary and initial conditions (7.5)-(7.8).

Example. Determine the motion of the string under the boundary-value
conditions (7.5)-(7.8). The initial deviation of the string is equal to zero but
the initial rate of the motion is caused by hammer impact at the middle of the
string. The functions f(x) and F(x) are determined by equalities

2h-x

for OSXSI—,
2

|
2h- (1 —x) o

f(x)=0, F(x)= |
| 2

<x<lI.
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The graph of the function F(x) is shown on the figure 2. The ends of

the string at x=0 and x=1 are fixed. Let us determined the Fourier
coefficients. It follows from condition (7.7) C_=0. Let us find the Fourier

coefficients D of the series

u=F(x)

v

1
2

Fig. 2. The initial rate of the string

D, =—jF(x)sm—xdx_
anzz0 |
|
__2 jz—hx smn—xdx j smn—xdx
anz 1 |

Analysis of graphs of functions F(x) and sinnl—”x that shown on the

fig. 3 let simplify evaluation of coefficients D, . Taking into account the
symmetry of graphs we get the conclusion

jzlhx smedx+j x)-sinnlﬂxdx=0,

2

If n is an even number, and
| |
2 I 2
johx-sinnl—”deJrjoh(l —x)~sinn|—7[xdx:Z-IZThx-sinnl—”xdx,
0 [ 0

2

if n is an odd number. Fourier coefficients D, with even numbers
disappear (D, =0, if n is an even number), but Fourier coefficients D_ are
calculated by the formula

|
2
D, _ 4 2—hx-sinn—”xdx,
anzy | I

if n is an odd number. Using the formula for integration by parts
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b

b b
ju-dv=u-v\ —jv-du,
we get
uzz—hx du:z—hdx
Dn: | | =
dv:sinn—ﬂx-dx v=—|—cosn—7[x
Nz |
/2 1
4 2h | Nz 2 nz 2h
=——|-=-X-—C0s——X  +[——cos——x-—dx |=
anrz | Nz I o N7 |
0
4 h-l nz 2h-l1 . nz-1Y_ 8h-l . nz-I|
= — COS— +——Sin = —sin .
anz\ Nz 2 nrx 2 a-n'rz 2

Here n is an odd number. Let us make substitution n=2m-1
(m=123,..).
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u=F(x)

v

N|=—

y:sinzx
2

v

N| =

. 7T
y:sml—x

v

|
=
N

. 37
y:SInI—X

NN N\

Fig.3. Graphs of the functions g, sin Z x, sm%x sin 3;

v

Then we obtain the answer for D :

8h-1 ma
= A=-1) .
" a-(2m-1)7° -2)
Taking into account equality (7.16) we get that the motion of the string

Is described by formula
gh-1 & (- 1)”” -(2m—1)-7r-t . (2m-1)-7-x

1) = : 7.19

Hix b= z(2m 1) | > | (7:19)

-7Z' =1
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7.4. Solving of the equation of the vibrating endless. String by the
running waves method (the D’alembert’s method)

Now we will consider the motion of endless drown string. Let us
Imagine the ends of the string very far from the segment of it. We deflect this
segment from its original position and impart a velocity to its points, then let
loose. The string is set into vibration. We‘ll find a solution of the equation
(7.1) satisfying the initial conditions (7.4) and (7.5) only. Such a problem is
called the Cauchy’s problem. We’ll consider the D’alembert’s method of
solving the problem. It is called the running waves method. Let’s prove the
general solution of equation (7.1) has the form

ux,t)=p(x—a-t)+y(x+a-t). (7.20)

Here ¢ and y are arbitrary functions double differentiable with respect

to x and t. Indeed
u =¢'(x—at) +y'(x+at),
u’ =@"(x—at) +y"(x+at),
u/=—a-@'(x—at)+a-y'(x+at),
ur=a’*-¢'(x—at)+a’-y"(x+at).
Substituting the second derivatives in equation (7.1) we get the identity.

The next problem is to define the unknown functions satisfying the initial
conditions (7.4) and (7.5). Let assume t=0. It follows from (7.4)

p(x)+y(x) = f(x). (7.21)
Taking t =0 in the expression for u; we obtain from initial condition (7.5)
—a-p'(X)+a-y'(x)=F(x). (7.22)
Integrating both sides from 0 to x, we get
— (%) + (%) :ij F(x)dx+C, (7.23)

C is a constant. It follows from the system of equations (7.21) and (7.23)
1 1 ¢ C
-~ f(x)——.[F il
()= (9= [F(odx-=.

1 1 % C
z//(x):Ef(x)+2—a-£F(x)dx+E.

Taking into account equality (7.22) and changing argument x on x —at
and x + at we find the function u(x,t)

U(X,t) _ f (X — at) ‘; f (X + at) N 21a . XZ.'atF (X)dX. (724)

This formula is called the D’alembert’s solution of the Cauchy’s
problem for wave equation .
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Example.
Solve the Cauchy’s problem for equation (7.1) under the next initial
conditions

u(x,0)=e™,
af
ott=0

Taking into account equalities f(x)=e™, F(x)=0, we get the answer

—(x-at)? —(x+at)?

€ +€

2

u(x,t) =

The deflection of the endless string in time according to the answer is
shown on the figure 4. It is the sum of two running waves. Both waves are

the graphs of the function f(x)=%-e‘x2. The first wave moves on the left, the
second wave moves on the right. The rate of movement is equal to a.

A
u

v

v

v

Fig.4. Running waves

7.5. The equation of heat conduction in a rod. Formulation of the
boundary-value problem

Let us consider a homogeneous rod of length |. Let us assume that the
lateral surface of the rod is impenetrable to heat transfer and the temperature
Is the same at all points of any cross-Chapteral area of the rod. Let us study
the process of propagation of heat in the rod. Let u(x,t) be the temperature in

the cross Chapter of the rod with abscissa xat time t. Experiment tells us that
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the rate of propagation of heat (that is, the quantity of heat passing through a
cross Chapter with abscissa x in unit time) is given by the formula
ou
=—k.-—-S 7.25
g ~ (7.25)
where S is the cross-Chapteral area of the rod and k is the coefficient

of thermal conductivity — ka—u -S - At. The quantity of heat passing through

X=Xy

the cross Chapter with abscissa x, during time At will be equal to
Al 5o At
OX |,
and the same for the cross Chapter with abscissa x,:
ou
AQ, =-k—| -S-At.
Q. Xy,
The influx of heat AQ, — AQ, into the rod element during time At will be

ou
AQ, —AQ, = —-k—
Q, —AQ, x

OX

This influx of heat during time At was spent in raising the temperature
of the rod element by Au

AQ, =k

-S-At -

X=X

o%u
Ox?

.S At-AX (7.26)

X=X

-S-Atjzk

X=X,

AQl—AQZ:c-p-Ax-S-AUzc-p-Ax-S-%-At (7.27)

where c is the heat capacity of the substance of the rod and p is the
density of the substance. Equating (7.25) and (7.26), we get

2
K- U s ax-At=c-p-ax-5- M oat.
OX ot
Denoting L:az, we finally get
cC-p
ou o°u
—=a’- : 7.28
ot OX? (7.28)

This is the equation for the propagation of heat (the equation of heat
conduction) in a homogeneous rod.

For the solution of equation (7.28) to be definite, the function u(x,t)
must satisfy the boundary-value conditions corresponding to the physical
conditions of the problem. For the solution of equation (7.28), the boundary-
value conditions may differ. The conditions which correspond to the first
boundary-value problem for 0<t<T are as follows:
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U(x0)=¢,() (7.29)
U0, =y, (1) (7.30)
u(l,t) =y, (1 (7.31)

Condition (7.29) (the initial condition) correspondi to the fact that for
t=0 the temperature is given in various cross Chapters of the rod and is
equal to ¢, (x). Conditions (7.30) and (7.31) (the boundary conditions)
correspond to the fact that at the ends of the rod, x=0 and x=1I, the
temperature is maintained equal to w, (t) and w,(t), respectively.

It is proved that the equation (7.28) has only one solution in the region
0<x<I, 0<t<T, which satisfies the conditions (7.29), (7.30) and (7.31).

7.6. Solving the first boundary-value problem for the heat-
conduction equation by the method of finite differences

Let us replace derivatives by appropriate differences
ou(x,t) _u(x+h,t) —u(xt)

OX h
o’u(x,t) 1(u(x+ h,t) —u(x,t) u(x,t)—u(x- h,t))
ox2  h h h
or
ou(x,t) N u(x +h,t) —2u(x,t) +u(x —h,t) (7.32)
OxX? h? '
similarly,
ou(x,t) N u(x,t+1)—u(xt) (7.33)

ot I

The first boundary-value problem for the heat conduction equation is
stated as follows. It is required to find the solution of the equation (7.28) that
satisfies the boundary-value conditions (7.29), (7.30), (7.31), that is, we have
to find the solution u(x,t) in a rectangle bounded by the straight lines
t=0, x=0, x=L, t=T, ifthe values of the desired function are given
on three of its sides: t=0, x=0, x=L. We cover region with a grid
formed by the straight lines (Fig. 5)

x=i-h, 1=012,...,

t=k-I, k=012,...

and approximate the values at the lattice points of the grid, (the points
of interChapter of these lines. Introducing the notation u(ih,kl)=u,, . We

write a corresponding difference equation for the point (ih,kl). In accord with
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(7.32) and (7.33) we get

ui,k+1 _ui,k _ az ui+l,k - 2ui,k + ui—l,k .

| h?
We determine

,
e O O O ® 0

G A O O O

C Q 0O s e BN

c O (i-1,k) (i+1k)

(i k)
C A O O A A
G A O O O O
O O O O O > X
Fig.5. Grid formed by the straight
lines
Un = (1_ 222 | ]ui,k +a’ #(uh-l,k +U, ) (7-34)

From (7.34) it follows that if we know three values in the row number
k, we can determine the value u, , in the (k +1)-th row. We know from

ik+1
(7.29) all the values on the straight line t=0. By formula (7.34) determine
the values at all the interior points of the segment t =1. We know the values
at the end points of this segment by virtue of (7.30) and (7.31). In this way,
row by row, we determine the values of the desired solution at all lattice
points of the grid. It may be proved that from (7.34) we can obtain an
approximate value of the solution not for an arbitrary relationship between

2

the steps h and I, but only for 1 < h Formula (7.34) is greatly simplified if

P

2

thestep length 1 is | = haz.

In this case, formula (7.34) takes the form

1
U= E(um,k +U, )
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Basic definitions

Table 33

English

Russian

Ukrainian

wave equation

BOJIHOBOE YPAaBHEHUE

XBUJILOBE PIBHSHHS

transversal vibrations of a

TornepeyHble KoaebaHus

MOTIEPEYHI KOJUBAaHHS

string CTPYHBI CTpYHH
flexible and elastic thread ruOKasi yrpyrasi HUTh THYYKa MPYKHA HUTKA
tension HanpsHKCHUE HaMpyKCHHsI
deflect OTKJIOHEHUE BiIXUJIEHHSA
impact yaap yaap
to cancel out BBIUYEPKHUBATH BUKPECIIOBATH
longitudinal vibrations of | mnpogoabHBIC KONEOAHMUS [MOB30BXHI KOJIUBAHHS
rods CTEepIKHEH CTEpKHIB
torsional oscillations of KPYTUJIbHBIC KOJICOaAHUS KPYTHUJIbHI KOJIMBAHHS
shafts BaJIOB BaJIiB
filtration of liquids and (GUIBTpAIHS JKUIKOCTH U GbinpTpallis piiuHA Ta
gases rasa razy
equations of parabolic ypaBHEHHUE PiBHSHHS TapabOoIIIHOTO
type 11apaboJIMYEeCKOro TUIIA TUITY
HOIIMPEHHS TEIUIa

propagation of heat

pacrpoCTpaHEHHE TeIia

porous medium

HOpHCTast cpeaa

IMMOPUCTC CCPCAOBUIIIC

subterranean sandstones

[MOJI3EMHI MMICYaHUKA

MOJI3EMHI MMICYaHUKA

equations of parabolic
type

ypaBHEHUE
rUnepO0IMIECKOro TUIa

PIBHSIHHS T11epOOIIYHOTO
TUITY

Laplace equation

ypaBHeHue Jlamaca

piBHsiHHS Jlamaca

TEOPUSI BEPOSTHOCTEN

Teopisi UMOBIPHOCTEN

probability theory
heat-conduction equation ypaBHEHHUE PIBHSHHS
TEIUIONTPOBOJAHOCTH TEIJIONPOBITHOCTI
KpanoBa 3ajJiada

boundary-value problem

KpacBasd 3aga4a

equation of the vibrating
string

ypaBHEHHE KojieOaHui
CTPYHBI

PIBHSIHHS KOJIUBaHb
CTpYHU

boundary conditions

IMPCACIbHBIC YCIIOBUS

I'paHUYHI YMOBHU

initial conditions

Ha4daJIbHBIC YCIIOBHA

NOYaTKOB1 YMOBH

boundary-value
conditions

KpacBLIC YCIIOBUA

IpaHUYHI YMOBHU

method of separation of
variables

METOJI pa3IeaCHUs
MIePEMCHHBIX

METOJI TTOATY 3MIHHUX

eigenvalues

COOCTBEHHbIE YKCJIa

BJIACHI YHCJIa

eigenfunctions

coOCTBeHHbIE (DYHKIIUU

BJIACH1 PYHKIIIT

double term-by-term
differentiation with

JIBOMHOE TIOWICHHOE
nuddepeHupoBaHue 1Mo

MMOJIB1IiHE ITOYJIEHHE
nudepeHIlitoBaHHS 3a

MEPMEHHBIM X U t

respect to x and to t

3MIHHUMH X Ta t

87



Chapter 8. ELEMENTS OF THE THEORY OF PROBABILITY
AND MATHEMATICAL STATISTICS

It is not sufficient merely to indicate the fact of randomness in order
to make use of a particular phenomenon of nature or to control a
technological process. We have to learn to evaluate random events
numerically and predict the course they will take. Such, at the present
time, are the insistent demands of theoretical and practical problems. Two
divisions of mathematics are engaged in the solution of such problems and
in constructing the requisite general mathematical theory: they are the
theory of probability and mathematical statistics.

8.1. Random event. Relative frequency of a random event. The
probability of an event. The subject of probability theory

The basic concept of probability theory is that of a random
(chance) event. A random event is an event which may occur or fail to
occur under the realization of a certain set of conditions.

Example. In coin tossing, the occurrence of heads is a random event.

Example. In firing at a target from a particular gun, hitting the
target or a given area on it is a random event.

Definition. The relative frequency p* of a random event A is the
ratio of the number m* of occurrences of the given event to the total
number n* of identical trials, in each of which the given event could
occur or fail to occur. We will write

*

m
I’l* ‘

Example. Suppose, under identical conditions, we fire 6 sequences of
shots at a given target;

In the first sequence there were 5 shots and 2 hits,

In the second sequence there were 10 shots and 6 hits,

12 shots and 2 hits

50 shots and 27 hits

100 shots and 49 hits

200 shots and 102 hits

Event A is a hit. The relative frequency of hit in the sequences will be
0.40, 0.60, 0.58, 0.54, 0.49, 0.51.

From observations of a variety of phenomena, we can conclude that
if the number of trials in each sequence is small, then the relative
frequencies of the occurrence of event A in the different sequences can
differ substantially from one another. However, if the number of trials in

P'(A)=p" =
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the sequences is great, then, as a rule, the relative frequencies of the
occurrence of event A in different sequences will differ but slightly, and the
difference is the smaller, the greater the number of trials in the sequences.
We say that the relative frequency in a large number of trials ceases more and
more to be accidental (of a random nature). Experiments show that in
most cases there is a constant p such that the relative frequencies of
occurrence of an event A, given a large number of trials, differ but slightly
from p, except in rare cases.
This experimental fact is symbolized as follows:

m

° n® /p

The number p is called the probability of occurrence of a random
event A. This statement is symbolized as

P(A)=p

The probability p is an objective characteristic of the possibility of occurrence
of event A under given trials. It is determined by the nature of A.

Given a large number of trials, the relative frequency differs very
slightly from the probability, except in rare cases, which may be ignored.

Since probability is an objective characteristic of the possibility of
occurrence of a certain event, to predict the course of numerous processes
that one has to consider in military affairs, in the organization of
production, in economic situations, etc., it is necessary to be able to
determine the probability of occurrence of certain compound events.
Determining the probability of occurrence of an event on the basis of
the probabilities of the elementary events governing the given
compound event, and the study of probabilistic regularities of various
random events constitute the subject of the theory of probability.

8.2. The classical definition of probability and the calculation of
probabilities

In many cases it is possible to calculate the probability of a
random event by proceeding from an analysis of the trial.

Example. A homogeneous cube with faces labeled 1 to 6 is called
a die. We will consider the random event of the occurrence of a number |
(1</<6) on the upper face for each throw of the die. By virtue of the
symmetry of the die, the events (the appearance of any number from 1 to
6) are equally probable. Hence they are called equally probable events.
Given a large number of throws, n it can be expected that the number |
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(and any other number from 1 to 6) will turn up in roughly n/6 cases.
Experiments corroborate this fact.

The relative frequency will be close to the number p°=n/6. It is
therefore considered that the probability of the number | (1</<6) turning
up is equal to 1/6.

Definition. Random events in a given trial are called disjoint
(mutually exclusive) if no two can occur at the same time.

Definition. We will say that random events form a complete group
if in each trial any one of them can occur but no disjoint event can occur.

We consider a complete group of equally probable disjoint random
events. We give the name cases to such events. An event (case) of such a
group is termed favorable to the occurrence of event A if the occurrence
of the case implies the occurrence of A.

Example. We have 8 balls in an urn. Each ball is numbered from 1 to 8.
Balls labeled 1, 2, 3 are red, the others are black. The occurrence of a ball labeled
1 (or 2 or 3) is an event favorable to the occurrence of a red ball.

For this case, we can give a definition of probability that differs
from that given above.

Definition. The probability p of event A is the ratio of the number
m of favorable cases to the number n of all possible cases forming a

complete group of equally probable disjoint events, or, symbolically,

P(A)ZPZZ

Definition. If relative to some event there are n favorable cases
forming a complete group of equally probable disjoint events, then such an
event is called a certain event. A certain event has probability p=1.

If not a single one of n cases forming a complete group of equally
probable disjoint events is favorable to an event, then it is termed an
Impossible event and has probability p= 0. From the definition of
probability it follows that the relation

0<p<li

holds true.

Example. Ten items out of a set of 100 are defective. What is the
probability that 3 out of any 4 chosen items will not be defective?

Solution. Four items out of 100 can be chosen in the following
number of ways: »=C;,,. The number of cases where 3 out of 4 items are

nondefective is equal to m=C;,-C/,. The desired probability is
_m_ Cgo 'Cllo

~0.3.
R C1400

p
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8.3. The addition of probabilities. Complementary random events

Definition. The logical sum (union) of two events A; and 4, is an
event C consisting in the occurrence of at least one of the events.

Let us consider the probability of the union of two disjoint events
4; and A,. The union of these events is denoted by

A+ A4,

The following theorem, which is called the theorem on the addition
of probabilities, holds true.

Theoreml. Suppose, in a given trial (phenomenon, experiment),
a random event A, can occur with probability P(A;) and an event A,
with probability P(A,). The events A, and A, are exclusive. Then the
probability of the union of the events, that is, the probability that
either event A; or event A, will take place, is computed from the
formula

P(A,0r4,) = P(4, )+ P(A4,) (8.1)

The proof of this theorem is the same for any number of terms:

P(Ajordyor...ord,)) = P(4, )+ P(4,)) +...+ P(4,)

Definition. Two events are called complementary events if they are
exclusive and form a complete group.

If one event is denoted by 4, the complement (complementary
event) is denoted by 4. Let the probability of the occurrence of event A
be p, the probability of the nonoccurrence of event A, that is, the
probability of the occurrence of event 4, be P(4)=4. On trial, either 4 or
4 will occur, therefore Theorem 1 gives

P(4)+ P(4)=1. (8.2)

That is, the union of the probabilities of complementary events is
equal to unity:

ptrqg=1

Corollary. If random events 4,,4,...,4, form a complete group of
exclusive events, then the following equation holds true:

P(A)+P(4)+..+P(4,)=1 (8.3)

Definition. Random events 4 and B are called compatible if in a
given trial both events can occur, which is to say we have a logical
product (interChapter) of events A and B.

The event which consists in the interChapter of A and B is denoted
by (A and B) or (AB). The probability of the interChapter of events A
and B will be denoted by P(A and B).
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Theorem. The probability of the union of compatible events is

computed from the formula
P(4 or B)=P(A)+P(B)-P(4 and B) (8.4)

The truth of formula (1.4) can be illustrated geometrically. We
first give the definition.

Definition. Given a certain domain D with area S. Consider a
subdomain d of D. Let S; be the area of d. Then the probability of a
point falling in d (the falling of a point in D is taken to be a certain
event) is, by definition, S;/S, or p=S,/S. This is called geometric
probability.

P(A or B)=area abcda
P(A) =area abfda
P(B)=area bcdeb
P(A and B)=areadebfd

8.4. Multiplication of probabilities of independent events

Definition. An event A is said to be independent of B if the probability of
occurrence of A does not depend on whether event B took place or not.

Theorem. If random events A and B are independent, then the
probability of the interChapter of events A and B is equal to the product
of the probabilities of occurrence of A and B:

P(A4 and B)=P(A)-P(B) (8.5

8.5. Dependent events. Conditional probability. Total probability

Definition. Event A is said to be dependent on event B if the
probability of occurrence of A depends on whether B took place or not.

The probability that event A occurred, provided that B took place, will
be denoted by P,(4) and will be called the conditional probability of event A
provided that B has occurred.

Theorem. The probability of the interChapter of two events is equal
to the product (logical interChapter) of the probability of one by the
conditional probability of the other computed on the condition that the first
event has taken place, that is

P(4 and B)=P(B)-Py(4) (8.6)
Total probability
Theorem. If event A can be realized only when one of the

events B, B.,, ..., B, which form a complete group of exclusive events,
occurs, the probability of event A is computed from the formula

92



P(A) = P(B,)- Py (A)+ P(B,)- Py (A)+...+ P(B,)- Py (A) (8.7)

Formula (8.7) is called the formula of total probability.

Proof. Event A can occur if one of the compatible events
(Byand A), (Band A), ..., (B,andA)

Is realized. Consequently, by the theorem of addition of probabilities,
we get P(A)=P(B, and A)+P(B, and A)+.. ...+ P(B,and A)

Replacing the terms of the right side in accordance with formula (8.1), we
get equation (8.7).

8.6. Probability of causes. Bayes's formula

Statement of the problem. We will consider a complete group of
exclusive events B,,B,,...B,, the probabilities of occurrence of which are

P(B,),P(B,),...P(B,). Event A can occur only together with some one of the
events B,,B,...,B,, which we will call causes.

The probability of the occurrence of event A is, in accord with formula (8.8)

P(A4) = P(B,)- Py (A)+ P(By)- Py (A)+...+ P(B,)- Py (4). (8.8)

Suppose that event A has taken place. This fact will alter the probability
of the causes, P(B,),P(B,)...P(B,). It is required to determine the conditional
probabilities of the realization of these causes on the assumption that event A
has occurred, that is, to determine P,(B,),P,(B,).... P,(B,).

(alter[o: Ite] - u3MeHsTD)

Solution of the problem. We will find the probability P (A and B,):
P(4 and B))=P(B,)-Ps (4)=P(A)-Py(B)

hence
_ P(B)- Py (4)
PA(Bl)_T'
Substituting for P (A) its expression (8.8), we get
P(Bl)'PB, (4)

P(B)=- (8.9)

> P(B,)- Py (4)
i=1

The probabilities P, (B,),P,(B,)..... P,(B,) are determined in similar fashion:

b= PO P

> P(B,)- Py (A)
i=1

P,(B,) - the probability of the realization of cause By provided that
event A has occurred.

Formula (8.9) is called Bayes's formula or the theorem of causes.
(Bayes' s rule for the probability of causes.)
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8.7. The Bernoulli’s scheme of the repeated trials

Suppose we have a sequence of n trials, in each of which event A can
occur with probability p.
Theorem. The probability p,(m) that in n trials event A will occur

m times and the event 4 (nonoccurrence of A) will occur n-m times is
equal to c»-pm¢g"™, wherec” is the number of combinations of n

elements taken m at a time; p is the probability of the occurrence of
event A, p=P(A); q is the probability of the nonoccurrence of event A,
that isg=1-p="P4).

F,(m)=C - p"q"™"

8.8. A discrete random variable. The distribution law of a discrete
random variable

Definition. A variable quantity X which, in a trial, assumes one
value out of a finite or infinite sequence Xy, X, . .., X ... IS called a
discrete random quantity (or variable), if to each value x, there

corresponds a definite probability p, that the variable x will assume the
value x, .

It follows from the definition that to every value x, there
corresponds a probability p, .

The functional relationship between p, and x, is called the
distribution law of probabilities of a discrete random variable x *

Possible values | x; Xo X Xn
of the random

variable X
Probabilities of | p; P> Pi Pn
these values p

PPz 155 [P A,
ol x =, x5 x, P
Fig. H:0 Fig. 6.
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The distribution law can also be represented graphically in the form
of a polygon of probability distribution (also called a frequency
polygon): in a rectangular coordinate system, points are constructed with
coordinates (x,, p,) and are joined by a polygonal line.

8.9. Relative frequency and the probability of relative frequency in
repeated trials

Let X be a random variable denoting the relative frequency of
occurrence of event A in athe sequence consisting of n trials. The probability

P(x:mj that the random variable X will assume the value m, that is,
n n

that in n trials event A will occur m times and the event A

mn m

(nonoccurrence of A) will occur n-m times is equal to C"p'q-", where C"
Is the number of combinations of n elements taken m at a time; p is the
probability of the occurrence of event A, p=P(A); q is the probability of
the nonoccurrence of event A, that is, g=1—p =P(A). Let’s make the
distribution law. This distribution law is known as the binomial

distribution because the probabilities p; are equal to the corresponding
terms in the binomial expansion of the expression (q — p)".

8.10. The mathematical expectation of a discrete random variable

Definition The mathematical expectation (or, simply, expectation)
of a random variable X (we symbolize expectation by M(X) is the sum

of the products of all possible values of the random variable by the
probabilities of its values.

M(X):kzxkpk'

In a large number of trials, the arithmetic mean of the observed
values is close to the expectation; or the arithmetic mean of the observed
values of a random variable tends to the expectation when the number of
trials increases without bound.

Variance. Root-mean-square (standard) deviation

In addition to the expectation of a random variable X, which
defines the position of the centre of a probability distribution, a
distribution is further characterized quantitatively by the variance of the
random variable. The variance is denoted by D(X).

The word variance means dispersion. Variance is a numerical
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characteristic of the dispersion, or spread of values, of a random variable
about its mathematical expectation.

Definition. The variance of a random variable X is the expectation
of the square of the difference between X and its expectation (that is, the
expectation of the square of the appropriate centred random variable.

D(X)=M((x-m ) or D(X)=3(x,-m)’p,. (8.10)

Variance has the dimensions of the square of the random variable. It is
sometimes more convenient in describing dispersion to make use of a quantity
whose dimensions coincide with those of the random variable. This quantity is
termed the root-mean-square deviation (standard deviation)

Definition. The root-mean-square deviation (standard deviation)
Is the square root from the variance.

o(X)=+/D(X).

Note. In computing variance, it is often convenient to transform
formula (8.10) as follows

D(X)=M(X?)—m?.

Properties of the mathematical expectation and the variance of a
discrete random variable

1.  M(c)=c, (c—const)

M(c-X)=c-M(X),

M(X +Y)=M(X)+M(Y),
M(X-Y)=M(X)-M(Y),
D(c)=0,

D(c- X)=c?-D(X),

D(X +Y)=D(X)+ D(Y),
D(X —Y)=D(X)+ D(Y).

A S -l

8.11. Continuous random variable. Probability density function of
a continuous random. Variable. The probability of the random
variable. Falling in a specified interval

Example. The amount of wear of a cylinder is measured after a
certain period of operation. This quantity is determined by the value of
the increase in diameter of the cylinder. We denote it by x. From the
essence of the problem, it follows that x can assume any value in a
certain interval (a, b) of possible values. This quantity is termed a
continuous random variable.

We consider the continuous random variable x specified on a
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certain interval (a,b) which can also be an infinite interval, (- oo,+x).
We divide this interval into subintervals of length Ax,_, =x —x_, by the
arbitrary points x,, X, X, ..., X, .

Suppose we know the probability that the random variable x will
fall in the interval (x, —x,_,). We denote this probability by P(x,, <x<x,)
and represent it as the area of a rectangle with base Ax.AAV (Fig. 6).

Definition. If there exists a function y = f(x) such that

nmP&<i;X+mO:fu) (8.11)

Ax—0

then this function f(x) is termed the probability density_function of
the random variable x (or, simply, density function), or the distribution.

i L+AT
Fig. 7.

(It is also called the frequency function, distribution density, or the
probability density.) We will use X to denote the continuous random
variable, x or X, to denote the values of this random variable. The curvey =
f(x) is called the probability curve or the distribution curve (Fig. 7). Using
the definition of Ilimit, from equation (8.12) follows, to within
infinitesimals of higher order than Ax, the approximate equation

P(x < X <X+ Ax)~ f(x)- Ax (8.12)

The following theorem holds true.

Theorem. Let f(x) be the density function of the random variable x.
Then the probability that a value of the random variable x will fall in
some interval (e, B) is equal to the definite integral of the function f(x)

from « to g that is, we have the following equation:
Pla<X < B)=
(8.13)

f (x)dx
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Knowing the probability density function of a random variable, we
can determine the probability that a value of the random variable will lie
in a given interval. Geometrically, this probability is equal to the area of
the resulting curvilinear trapezoid (Fig. 8).

It is possible to verify that Tf(x)dx=1.

8.12. The distribution function

Definition. Let f(x) be the density function of some random
variable x (- o < x<+w); then the function

F(x)= j £ (x)dx (8.14)

Is called the distribution function.
From equation (8.13), it follows that the distribution function F(x) is the

probability that the random variable x will assume a value less than x.

The value of the distribution function for a given value of xis
numerically equal to the area bounded by the distribution curve lying to
the left of the ordinate drawn through the point x. The graph of the
function F(x) is termed the probability distribution curve.

Theorem. The probability of a random variable x lying in a given interval
(e, B) is equal to the increment in the distribution function over that interval:

Pla< X <B)=F(B)-F(a).
Note that the density function f(x) and the corresponding distribution
function F(x) are connected by the relation F'(x) = f(x).

This follows from (8.4) and the theorem on differentiating a definite
integral with respect to the upper limit. It can be shown F(x) increases

when x increases and 0< F(x)<1.

8.13. Numerical characteristics of a continuous random variable

Let us examine the numerical characteristics of a continuous random
variable x with density function f(x).

Definition The mathematical expectation of a continuous random
variable x with density function f(x) is the expression

M(x):ix- f(x)-dx.
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Fig. 9.

It is possible to use the symbol m,_ for the expectation. The expectation

is called the centre of probability distribution of the random variable.
(Fig. 9). If the distribution curve is symmetric about the x-axis, that is, if
f(x) is an even function, then clearly

M (x)= Tx- f(x)-dx=0

Let us consider a centered random variablex—m_. We will find its
expectation

M(x-m )= T(x—mx)- f(x)-dx=0

The expectation of a centered random variable is zero.
Definition. The variance of a random variable x is the expectation
of the square of the corresponding centred random variable

D(x)=Ic(x—mx)2 - f(x)- dx.

Definition. The standard deviation of a random variable xis the
square root of the variance:

a(x)=+/D(x).
Definition. The value of the random variable x for

which the density function is a maximum is termed the mode (symbolized by
M ). For the centered random variable x the mode coincides with the
expectation.

Definition. A number (symbolized by M,) is called the median

(Fig.10), if it satisfies the equation
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8.14. Normal distribution the expectation of a normal distribution

Studies of various phenomena show that many random variables,
such, for example, as measurement errors, the lateral deviation and
range deviation of the point of impact from a certain centre in gunfire,
and the amount of wear in machine parts, have a density function given

by the formula
1 (x—a)’
f(X)=———-exp| — 8.15
0)=—""— p( 5o ] (8.15)
We say the random variable has normal distribution or is normally

distributed (the term Gaussian distribution is also used). The so-called
normal curve (normal distribution curve) in shown at the fig. 11.

Y
A
N 6Y27
— a
o c e

Fig. 11

It can be shown that the density tunction (8.15) satisfies the basic
relation [ f(x)dx=1.

The expectation of a random variable with normal distribution is

mX:Tx- 1 -exp[—(xz;a:) jdx—a.

e O A2

The value of the parameter a in formula (8.15) is equal to the
expectation of the random variable under consideration. The point x=a
is the centre of the distribution or the centre of dispersion. When x=a the
function f(x) has a maximum and so the value x=a is the mode of the
random variable. It may be shown that the median of the normal
distribution is equal to a.
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8.15. Variance and standard deviation of a normally distributed
random variable

The variance of a continuous random variable is found by formula

2
[C X \/_ exp[— (XZ_G?) jdx.
Calculation gives the result
D(X)IO‘Z.
The standard deviation, in accordance with formula
o(x)=/D(x) is o(x)=0.
Thus, the variance is equal to the parameter o° in the density
function formula (8.15).

8.16. The probability of a value of the random variable falling in a
given interval. The Laplace function. Normal distribution function

Let us determine the probability that a value of the random
variable x having the density function
1 (x —a)’
f(X)=————-exp| ———
(0= e - 02

fall in the interval (a B)

Pla< X <) j f(x or
o1 (x-a)
P(a < X <,B)_£G- - exp( > jdx.
Making the change of variable
x-a_,
o2
we get

p—a

1 72 .
P(a<X<,8)=ﬁ [etdt
(T’\E

The integral on the right is not expressible in terms of elementary
functions. The values of this integral can be expressed in terms of the

X

values of the probability integral @(x je “dt.

0

(8.16)
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Fig.12.

ere are some of the properties of the function.
(x) is defined for all values of x
(0)=0
(+-0)=1
(x) is monotonlc increasing on the interval (0,+x).
(x) is an odd function since

D (- x)=—d(x).

The graph of the function @(x) is shown in Fig. 12.

Rewrite equation (8.16) using the theorem on the partition of the
interval of integration

H
1 @
2. ®
3. @
4. ©
5. @

p-a

Pla< X < f)= lﬂ j:‘dt+ - ftdt E {@(ﬁ:/;lj—@(i:/;ﬂ (8.17)

Let us compute the probability that a value of the random variable
will fall in the interval (a—1,a+1) symmetric about the point x=a.
Formula (8.17) then takes the form

Pla-1<X <a+l)=> { (GH Q(a_—éﬂ

or

Pla-1<X <a+|):®(%\/§j.

The right side does not depend on the position of the centre of
dispersion, and so for a=0 as well we get

P(-1<X <+I):CD(L\/§J. (8.18)

(‘D

®

N
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8.17. The three-sigma rule. Error distribution

In practical computations, the unit of measurement of the deviation
of a normally distributed random variable from the centre of dispersion
(the mathematical expectation) is taken to be the root-mean-square
(standard) deviation o. Then, by formula (5.18), we get a useful
equation:

P(-30 < X <+30)= cp(ij =0.997.

V2

We can be almost certain that the random variable (error) will not
depart from the absolute value of the expectation by more than 3c.
This proposition is called the three-sigma rule.

Note In place of the function, ®(x) frequent use is made of the
Laplace function
2dt

_ 1 % -
d(X)=——|¢
)= T2

The Laplace function is connected with the function ®(x) by a
simple relation:
X

— 1
D(x)== D] = |.
(x) 2 (ﬁ)
PROBLEMS

1) The classical definition of probability

1. One card is drawn from a deck of 36 cards. What is the probability of
drawing a spade?

2. Two coins are tossed at the same time. What is the probability of
getting 2 heads.

3. Two dice are thrown at one time. Find the probability that a sum of
5 will turn up.

4. One hundred cards are numbered from 1 to 100. Find the probability
that randomly chosen card has the digit 5.

5. There are 10 tickets in a lottery: 5 wins and 5 looses. Take two
tickets. What is the probability of a win?

6.* A die is thrown 5 times. What is the probability that a six will turn
up twice and non-six three times?

7. Ten times out of a set of 100 are defective. What is the probability
that 3 out of any 4 chosen items will not be defective?
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2) The addition of probabilities. Multiplication of probabilities

8. The probability of hitting a target from one gun is 0.8, from another
gun, 0.7. Find the probability of destroying the target in a simultaneous firing
from both guns. The target will be destroyed if at least one of guns makes a hit.

9. Shots are fired at a certain domain D consisting of three non-
overlapping zones. The probability of hitting of:

Zone I: P(A)=0.05

Zonell: P(A)=0.1

Zone lll:  P(A,)=0.17

What is the probability of hitting D?

10. Non-failure operation of a device is
determined by trouble-free operation of each of three
component units. The probabilities of no-failure
operation of the units during a certain cycle are
p, =06, p,=0.7, p,=0.9. Find the probability that the device will not break

down the indicated operation cycle.

11. Two tanks are firing at one and the same target. Tank one has a
probability of 9/10 of hitting the target. Tank two - a probability of 5/6. One
shot is fired from each tank at the same time. Determine the probability that
two hits will be scored.

12.* The probability of destroying a target in one shot is equal to p.
Determine the number n of shots needed to destroy the target with probability
greater than or equal to a?

13. There are 4 machines. The probability that a machine is in
operation at an arbitrary time t is equal to 0.9. Find the probability that at
time t at least one machine is working.

14. The probability of hitting a target is p=0.9. Find the probability that
in three shots there will be three hits.

15. Box one contains 30% first-grade articles. One article is drawn
from each box. Find the probability that both drawn articles are first-grade.

16. The probability of a hit in a single shot is p=0.6. Determine the
probability that three shots will yield at least one hit.

3) Dependent event. Conditional probability. Total probability.
Bayes’s formula.

17. The probability of manufacturing a non-defective (acceptable) item
by a given machine is equal to 0.9. The probability of the occurrence of
quality articles of grade one among the non-defective items is 0.8. Determine
the probability of turning out grade-one articles by this machine.
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18. Three shots are fired at a target in succession. The probability of a
hit in the first shot is p, =0.3, in the second, p, =0.6, in the third, p,=038.In

the case of one hit, the probability of destroying the target is 1, =0.4, in the
case of two hits, 1, =0.7, in the case of three hits i, =1.0. Determine the

probability of destroying the target in three shots.

19. Out of a total of 350 machines, there are 160 of grade one, 110 of
grade two, and 80 of grade three. The probability of defectives in the grade-
one category is 0.01, in the grade-two category, 0.02, in the grade-three
category, 0.04. Take one machine. Determine the probability that it is
acceptable.

20. At a factory, 30% of the instruments are assembled by specialists of
high qualification, 70% by those of medium qualification. The reliability of
an instrument assembled by the former is 0.9, that assembled by the latter,
0.8. An instrument picked off the shelf turns out to be reliable. Determine the
probability that it was assembled by the specialists of higher qualification.

21. Stack of two tanks fired independently at a target. The probability
of the first tank destroying the target is p, =0.8, that of the second, p, =04.
The target is destroyed by a single hit. Determine the probability it was
destroyed by the first tank.

4) Repeated trials

22. What is the probability that event A will occur twice (a) in two
trials, (b) in three trials, (c) in 10 trials, if the probability of the occurrence of
the event in each trial is equal to 0.4?

23. Five independent shots are fired at a target. The probability of a hit
is each shot in 0.2. Three hits suffice to destroy the target. Determine the
probability of target destruction.

24. Four independent trials are carried out. The probability of the
occurrence of event A in each trial is 0.5. Determine the probability that A
will occur at least twice.

25. The probability of defective items in a given batch is p=0.1. What is
the probability that in a batch of three items there will be 2 defective items?

26. Find the probability of obtaining at least one hit in the case of 10
shots if the probability of hitting the target in a single shot is p=0.15.
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Basic definitions

Table 34

English

Russian

Ukrainian

Theory of Probability

Teopust BeposATHOCTEM

Teopist iiMoBipHOCTEH

random CIIy4alHBIN BUITAIKOBUN
event coObITHE
trial UCIIBITAHHE BUIIPOOYBaHHS
occur IIPOUCXOJUTh BigOyBaTucs
occurrence HaCTyIJICHHEC HaCTaHHS
toss noa0pachIBaTh M IKAUOATH
head repo repo
relative frequency OTHOCHTEJIbHAs YaCTOTa BIJIHOCHA YacToTa
cease MpeKpaIiaTh TPUTTUHATH
accidental CITy4YaiHbIN BUITAIKOBUI
compound COCTaBHOU CKJTaJI0BIl
corroborate MOJITBEPIKIAThH HiATBEPIXKYBaTH
die UrpasibHasi KOCTh rpajbHa KiCTKa

equally probable events

PaBHOBO3MOIKHBIC COOBITHS

PIBHOMOXJTIB1 TIOTi1

disjoint (mutually exclusive) HECOBMECTHBIN HECTILTbHUM
complete group HOJTHAsS TPYIIa MOBHA rpyma
favorable OJaronpus THHIA CTIPISTINBHIA

certain event

AOCTOBCPHOC coOBITHE

JOCTOBIpHA MO

impossible event

HEBO3MOKHOE COOBITHE

HEMOKJINBA TI0Iis

complementary events

ITPOTHUBOITOJIOKHBIC COOBITHS

MIPOTHJICIKHI TTOAIT

compatible events

COBMECTHBIE COOBITHSA

CHUIBHI moail

urn model cxema ypH cxema ypH
the logical sum (union) of . , .
events cymMa (00beIMHEHNE) COOBITUI cyMa (00'enHaHHA) TOA1H

the logical product
(interChapter) of events

YMHOXeHHE (TIepeceyecHue)
COOBITHI

MHO>KEHHS (TIepeTUHAHHS) TTOIi}

conditional probability

YCJIOBHAAd BEPOATHOCTH

yYMOBHa WMOBIPHICTh

cause MOJTHASI BEPOSTHOCTh NIOBHA IMOBIpHICTh
discrete JTUCKPETHBIN TUCKPETHUN
distribution law 3aKOH pacrpeaeacHus 3aKOH PO3MOIiTY
frequency polygon MIOJIUTOH YacTOT MOJIITOH YacTOT

repeated trials

TMOBTOPHLIC UCTIBITAHUSA

MOBTOPHI BUIPOOYBAHHS

mathematical expectation

MaATEMAaTHYCCKOC OXKHAAHUC

MaTEMAaTUYHE OquyBaHHSI

variance JHCTIepCHUs JHCTIepCis
CpEeIHEKBaIPaTUUECKOE . .
root-mean-square CepeIHEeKBaApaTiqHE BiIXUICHHS
OTKJIOHEHHE

probability density function

(GyHKINS TUIOTHOCTH
BEPOSATHOCTEM

(GYHKIS MUTEHOCTI
HWMOBIpHOCTEH
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