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PREFACE 

 

 

This textbook is intended mainly for students who have already studied 

the basic Mathematics and need to study and practice using the methods of 

Differential and Integral Calculus. All the important concepts of Calculus are 

explained and there are exercises of each point to concentrate on those 

methods, which students need to use but which often cause difficulty. The 

mathematical language used is as simple as possible. 

 

The textbook covers the topics to be studied: 

 

1. LINEAR ALGEBRA. MATRICES.  MATRIX OPERATION  

2. LINES IN PLANE AND IN SPACE   

3. CALCULUS. FUNCTIONS  

4. THE DERIVATIVE. 

5. INDEFINITE INTEGRAL. DEFINITE INTEGRAL. IMPROPER 

INTEGRAL  

6. DIFFERENTIAL EQUATIONS 

7. EQUATIONS OF MATHEMATICAL PHYSICS 

8. ELEMENTS OF THE THEORY OF PROBABILITY  

AND MATHEMATICAL STATISTICS 
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Chapter 1.  LINEAR ALGEBRA. MATRICES. MATRIX 

OPERATIONS 
 

Definition (Def ).  Matrix. An array of numbers forming a rectangular 

table is called a matrix. 

Def. The size or dimensions or order of a matrix are the number of 

rows and the number of columns it contains.  

If there are m rows and n columns, the matrix is said to be m by n, 

which is written m*n. 

Def. If m=n id est if a quantity of rows equals a quantity of columns, 

then the matrix is called square. 
 

1.1. Matrix Operations 

Def. If ( )ijA a  and ( )ijB b  are both m*n matrices, then their sum, 

C A B  , is also m*n and its entries are given by the formula  

ij ij ijC a b   

and their difference, D A B  , is also m*n and its entries are given by 

the equation 

ij ij ijd a b  . 

Def. If ( )ijA a  is an m*n matrix and k is a scalar, then the scalar 

multiple S kA  is also m*n and its entries are given by the formula 
ij ijs ka . 

Def. The transpose of an m*n matrix A is the n*m matrix TA formed by 

making the rows of A the columns of TA . 

Def. Matrix multiplication. If A  and B  are matrices, then their product, 

AB , is defined only if the number of columns of A  equals the number of rows 

of B . So, if the matrix A  is m*n, then B  must be n*p in order for the product 

AB  to be defined. In this case, the size of  the product matrix AB  is m*p, and 

the ( , )i j  entry of AB  is equal to the sum of products of entries of row i in A  

by corresponding entries of column j in B . 

That is: ( , )i j  entry of ( ) ( )i jAB r in A C inB  . 

Thus: 
A B AB

m n n p m p


  
 



9 

   Тable 1  

Basic definitions 

English Russian Ukrainian 

Matrix (matrices) матрица матриця 

Array построение, массив побудова, масив 

Rectangular прямоугольный прамокутний 

Set ряд ряд 

Row строка рядок 

Column столбец стовпець 

Restriction ограничение обмеження 

Scalar скаляр скаляр 

Row matrix  

(row vector) 

матрица - строка матриця - рядок 

Column matrix 

(column vector) 

матрица - столбец матриця - стовпець 

Vice versa наоборот навпаки 

Transpose транспонирование транспонування 

Id est (that is) то есть тобто 
 

1.1.1. Determinants and their properties 

Associated with each square matrix is an important number, called its 

determinant. 

Def. Determinant. The determinant of the n-th order is a number or an 

algebraic expression corresponding to a square matrix with n
2 

elements and 

calculating by the certain rules. 

Method 1. Copy the first two columns of the determinant and place 

them to the right of it. Take the products formed by multiplying “down” and 

from their sum subtract the products formed by multiplying “up”. 

Def. Minor. The minor Mij associated with a ij is obtained by blotting 

out of the determinant the row and column on which a ij lies. 

Method 2. The expansion along the column or row. The determinant 

equals the sum of the products of the entries of any line by their minors. 

Theorem 1. The transpose determinant is equal to the original 

determinant. 

Theorem 2. If two parallel lines – rows or columns of a determinant 

are interchanged, the determinant changes sign. 

Theorem 3. If two parallel lines of a determinant are identical, then the 

determinant is O. 

Theorem 4. If the entries in a line are all multiplied by a constant, then 

the determinant is multiplied by that constant. 
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Тable 2 

Basic definitions 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Тask 

If A is a 3*3 matrix whose determinant equals 5, what is the 

determinant of the matrix 2A? 
 

1.1.2. Identity matrices and inverses 

Def. A square matrix, which has 1’s along its main diagonal and O’s 

elsewhere, is called an identity matrix and is denoted I. 

Def. If both A and B are square matrices and AB=I then A is called the 

inverse of B and B is called the inverse of A. 

Def. A square matrix that has an inverse is said to be invertible. 

 

 

1.2. Linear systems 

 

Def.  A linear system is a collection of a few linear equations for which 

we seek solutions (values of unknowns x i ) that satisfy all the equations of the 

system simultaneously. 

Def. A system that has at least one solution is called consistent. 

There are only 3 possibilities for the number of solutions: 

1. There are no solutions. Such system is said to be inconsistent. 

2. There is exactly one solution. 

3. There are infinitely many solutions. 

The graphs of the equations in the first case are parallel lines with no 

points in common. The graphs of the equations in the second case intersect in 

English Russian Ukrainian 

Concept понятие поняття 

Determinant определитель визначник 

To be of the form иметь вид мати вигляд 

To evaluate 
оценивать,  

находить 

оцінювати, 

знаходити 

Minor минор мінор 

To obtain 
получать,  

определять 

отримувати, 

визначати 

To blot out вычёркивать викреслювати 

Expansion 
разложение, 

расширение 

розкладання, 

розширення 

To interchange менять местами міняти місцями 

To switch поменять поміняти 
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exactly one point. The graphs of the equations in the third system are lines 

that coincide. 
 

Тable 3 

Basic definitions 

English Russian Ukrainian 

Identity matrix единичная 

матрица 

одинична 

матриця 

Inverse обратный зворотний 

Similarly подобно, 

аналогично 

подібно, 

аналогічно 

Invertible невырожденный невироджений 

Variable переменный змінний 

Unknown неизвестный невідомий 

Simultaneously одновременно одночасно 

At least по крайней мере принаймні 

Consistent совместный спільний 

Infinitely бесконечно нескінченно 

Graph график графік 

Intersect пересекать перетинати 

Coincide совпадать збігатися 

distinct различный різний 
 

Тask 

Two distinct solutions 1x  and 2x  can be found to the linear system 

AX B . Which of the following is necessarily true? 

a) 0B  ; в) Ais invertible: c) 1 2X X  , d) there exists a solution x  such 

that 1x x , 2x x . 
 

1.2.1. Cramer's rule 

It can be used for solving only a square linear systems. 

If A is a square matrix, then linear system AX B  has a unique solution 

for every B if and only  if  det 0A . 
 

1.2.2. Gaussian elimination 

1. Take the coefficients of the unknowns and form the coefficients 

matrix. Then attach the constants of the right-hand sides of the equations as 

an additional column, producing the augmented matrix. 

2. Perform a series of elementary row operations to reduce (transform) 

the augmented matrix to echelon form. 

A matrix is said to be in echelon form when it's upper triangular; any 
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zero rows appear at the bottom of the matrix, and the first nonzero entry in 

any row appears to the right of the first nonzero entry in any higher row. 

 

An elementary operations is one of the following: 

a) multiplying a row by a nonzero coustant; 

b) interchanging two rows; 

c) adding a multiple of one row to another row. 

3. Working from the bottom of the echelon matrix upward, evaluate the 

unknowns using backsubtitution. 

To check the solutions plug it into all the original equations. 
 

Тable 4 

Basic definitions 

English Russian Ukrainian 

unique единственный єдиний 

to plug подставить підставити 

elimination 
исключение, 

устранение 

виключення, 

усунення 

to augment увеличивать збільшувати 

upper  

triangular form 

верхний 

треугольный вид 

верхній трикутний 

вид 

top row верхняя строка верхній рядок 

bottom row нижняя строка нижній рядок 

to yield 
производить, 

получать 

здійснювати, 

одержувати 
 

Тask 

A driver wants to learn how many miles per gallon her car gets in the 

city and on the highway. On Monday she drove 30 miles in the city and 90 

miles on the highway and used 6 gallons. During the 2-day period Tuesday 

and Wednesday, she drove75 miles in the city and 300 miles on the highway 

and used 17 galons. Thursday she drove 150 miles in the city and 210 miles 

on the highway and used 18 galons. 

a) How much gasoline evaporates or leaks out of the tank per day? 

b) How many miles per gallon does her car get in the city and on the highway? 
 

 

1.3. The algebra of Vectors 

Def. Two parallel directed line segments, 1 1PQ  and 2 2P Q , that have the same 

length and point in the same direction represent the same vectors. 

Def. The vector, that has length 0 and no direction is called the zero vector. 
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Def. The length of the vector is called the magnitude and is denoted by a . If 

the origin of a rectangular coordinate system is at the tail of a , then the head of a  

has coordinates  , ,x y z  in the space or  ,x y  in the plane. The numbers x , and y  

and z  are called the scalar components of a  relative to the coordinate system. 

Def. Any vectors of length unit is called a unit vector. 

Def. The vectors  1,0,0i  ,  0,1,0j  ,  0,0,1k   are called the basic unit vectors. 
 

1.3.1. Algebraic operations on vectors 

Def. The sum of two vectors a  and b  is defined as follows. Place the tail of b  

at the head of a . Then the vector sum a b  goes from the tail of a  to the head of b . 

Observe that b a a b   , since both sums lie on the diagonal of a parallelogram. 

Def. Let a  and b  be vectors. The vector v  such that b v  equals a  is 

called the difference of a  and b  and is denoted a b . Thus  b a b a   . 

Def. The negative of the vector a  is defined as the vector having the 

same magnitude as a  but the opposite direction. It is denoted a . Observe that 

  0a a   , just as with scalars. 

Def. The product of a scalar and a vector. If k is a scalar and a  a vector, 

the product ka  is the vector whose length is k  times the length of a  and 

whose direction is the same as that of a  if k is positive and opposite that of a  

if k is negative. 

Theorem. For any vector a  not equal to o , the vector 
a

a
 is the unit 

vector in the direction of a . 
 

Тable 5 

Basic definitions 

English Russian 

 

Ukrainian 

To point указывать, 

показывать 

указувати, 

показувати 

Magnitude величина, модуль 

(вектор) 

величина, модуль 

(вектор) 

Origin начало початок 

Tail of a vector начало вектора початок вектора 

Head of a vector конец вектора кінець вектора 

Component компонента компонента 

Unit vector единичный вектор одиничний вектор 
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To draw чертить, строить креслити, будувати 

To magnify увеличивать, 

растягивать 

збільшувати, 

розтягувати 
 

 

Тask 

1. Give an example of plane vectors a  and b  such that 

 a) a b a b   , 

 b) a b a b   . 

2. Find the scalar components of a  if 

a) 10a  , and a  points to the north; 

b) 6a  , and a  points to the southeast. 

3. Let a and b be scalars, not both 0 . Show that 
2 2 2 2

,
a b

a b a b

 
 

  
 is a 

unit vector. 

4. If u  is a unit vector, what is the length of 3u ? 

5. Find the unit vector that has the same direction as 2 3i j k  . 
 

1.3.2. The dot product of two vectors 

Def. Dot product. Let a  and b  be two nonzero vectors. Their dot 

product is the number cosa b   , where   is the angle between a  and b . It 

is denoted a b . The dot product is a scalar and is also called the scalar 

product of a  and b . 

If a  is the force applied to an object and b  is the line segment, then the 

dot product a b  defines the work accomplished by the force a  in pulling the 

object along a straight line from the tail to the head of b . 

The angle between two vectors can be determined by the formula:   

cos
a b

a b






. 

Def. Let a  and b  be vectors. The projection of a  on b  is called the 

number 
bpr a a   , where   is the angle between a  and b . 

The direction of a vector in space involves three angles, two of which 

almost determine the third. 

Def. Direction angles of a vector. Let a  be a nonzero vectors. The 

angles between a  and i , j , k  are called the direction angels of a. They are 

denoted  ,  ,   respectively. The numbers cos , cos , cos  are the 



15 

direction cosines of the vector a . 
2 2 2cos cos cos 1a     . 

In economics the dot product is used as an algebraic convenience. 
 

 

 

Тable 6 

Basic definitions 

English Russian Ukrainian 

The dot product скалярное 

произведение 

 скалярний 

добуток 

Angel угол кут 

Projection проекция проекція 

Direction angle направляющий 

угол 

напрямний кут 

 

Тask 

1. Compute a b : 

i. a  has length 3, b  has length 4 and the angle between a  and b  

is 4  

ii. 3 2a i j k   , 5b i k  . 

iii. a MN ,  b P Q ,  where (4, 1, 2)M  , (2, 2,3)P  , (1,2, 7)Q  , 

(2,3, 4)N   

2. Find the cosine of the angle between 6i j k   and 4 2i j k  . 

3. Find the cosine of the angle between AB  and CD  if (0, 1, 2)A   , (2, 1,3)B  , 

(5,0,3)C , ( 2,1,4)D  . 

4. Find the scalar components of 3 2i j  on 4 3j k . 
 

1.3.3. The Cross Product. The Triple Scalar Product 

Def. Let kajaiaa 321  and .321 kbjbibb   

The vector 
21

21

31

31

32

32

321

321
bb

aa
k

bb

aa
j

bb

aa
i

bbb

aaa

kji

  is called 

the cross product of a  and b . It is denoted .ba  The determinant of ba  is 

expanded along its  first row. 

Since the cross product of two vectors is a vector, the cross product is 

also called the vector product. 

Note that ba  is a vector, while ba  is a scalar. 

Theorem 1. The cross product ba  is a vector perpendicular to both a and .b   
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So one of the most common uses of the cross product is in figuring out 

a vector normal to two given vectors. 

Geometric Description of the Cross Product. 

GD expresses the direction and magnitude of ba   in terms of those of 

a and .b  

 

To figure out the direction of the cross product, we use the right-hand 

rule: if the fingers of the right hand curl from a to b through an angle less 

than 180
0
, then thumb points in the direction of .ba   

Theorem. The magnitude of ba  is equal to the area of the 

parallelogram spanned by a and b . 

GD: ba  is that vector perpendicular to both a and b , whose direction 

is obtained by the right-hand rule and whose length is the area of the 

parallelogram spanned by a and b . 

Def. The Triple Scalar Product. The scalar product of vectors  ba   

and c is called the triple scalar product. It is denoted .cba  

Theorem. The absolute value of the triple scalar product is the volume 

of the parallelepiped formed by the vectors ,a  b and .c  
 
 

Тable 7 

Basic definitions 

English Russian 

 

Ukrainian 

Right hand rule правило “правой 

руки” 

правило “правої 

руки” 

To curl завиваться завиватися 

Thumb большой палец великий палець 

To span соединять, 

покрывать, 

образовывать 

з'єднувати, 

покривати, 

утворювати 

Triple scalar 

product 

смешанное 

произведение 

 мішаний добуток 

Parallelogram параллелограмм паралелограм 

Parallelepiped параллелепипед паралелепіпед 
 

Тask 

1. Let a be a nonzero vector. If 0ba and 0a b  , must 0b ? 

2. Show, that the points A(0, 1, 2), B(-2, 3, 0), C(1, 4, -2) and D(0, 9, 

8) lie in the same plane. 
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Chapter 2.    LINES IN PLANE AND IN SPACE 

 

2.1. Lines in plane 

Let jBiAn   be a nonzero vector and ),( 00 yx  be a point in the xy  

plane. There is a unique line through ),( 00 yx  that is perpendicular to n . 

Vector n  is called a normal to the line. 

Theorem 1. An equation of the line in the xy  plane passing through 

),( 00 yx and perpendicular to the nonzero vector jBiAn   is given by 

0)()( 00  yyBxxA . 

As theorem 1 shows, to find a vector perpendicular to a given line 

0Ax By C   , form the vector n Ai Bj  . It will be perpendicular to the line. 

The constant term C  plays no role in determining the direction of the line or 

of a vector perpendicular to it. 

 

 

Theorem 2. The distance from the point ),( 111 yxP  to the line L  whose 

equation is 0 CByAx  is 
22

11

BA

CByAx




. 

An equation of the line determined by two points: 1 1

2 1 2 1

x x y y

x x y y

 


 
. 

2.1.1. Polar coordinates 

Rectangular coordinates are only one of the way to describe points in 

the plane by pairs of numbers. Another system is called polar coordinates. 

PC describe a point P  as the interChapter of a circle and a ray from the 

center of that circle. They are defined as follows. 

Select a point (pole) in the plane and a ray emanating from this point 

(polar axis). Measure positive angles   counterclockwise from the polar axis 

and negative angles clockwise. Now let r be a number. To plot the point P  

that corresponds to the pair of numbers r and , proceed as follows: 

If r is positive, P  is the interChapter of the circle of radius r whose 

center is at the pole and the ray of angle  , emanating from the pole. If r is , 

P is the pole, no matter what   is. 

If r is negative, P  is at a distance r  from the pole on the ray directly 

opposite the ray of angle  . 

In each case P  is denoted ( , )r  . 
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2.1.2. The relations between polar and rectangular coordinates 

cos

sin ;

x r

y r








 

2 2 2r x y  , 
y

tg
x

  . 

 

Тable 8 

Basic definitions 

English Russian 

 

Ukrainian 

Polar полярные 

координаты 

полярні координати 

Plane плоскость площина 

Normal нормаль нормаль 

Conversely обратно обернено 

Inspection осмотр огляд 

Right triangle прямоугольный 

треугольник 

прямокутний 

трикутник 

Origin начало (системы 

координат) 

початок (системи 

координат) 

Ray луч промінь 

To emanate исходить виходити 

Pole полюс полюс 

To measure измерять, 

откладывать, 

отмерять 

вимірювати, 

відкладати, 

відміряти 

Counterclockwise в направлении 

против часовой 

стрелки 

у напрямку проти 

годинникової 

стрілки 

Clockwise в направлении 

часовой стрелки 

у напрямку 

годинникової 

стрілки 

To go out выходить виходити 
 

Тask 

1. Find the direction cosines of the line through the points )1,4(   

and )3,2( . 

2. Find the distance from the point )3,2(   to the line determined by 

the points )4,0(  and ( 3,7) . 
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3. Give at least three pairs of polar coordinates ( , )r   for the point 

3,
4

 
 
 

. 

4. Transform the equation into one in rectangular 

coordinates: 3r  ; sinr  . 
 

2.1.3. Conic Chapters: ellipse, hyperbola, parabola 

Def. The interChapter of a plane and the surface of a double cone is 

called a conic Chapter.  

If the plane cuts off a bounded curve, that curve is called an ellipse. In 

particular, a circle is an ellipse. 

If the plane is parallel to the edge of the double cone, the interChapter 

is called a parabola. 

In the cases of the ellipse and the parabola, the plane generally meets 

just one of the two cones. 

If the plane meets both parts of the cone and is not parallel to an edge, the 

interChapter is called a hyperbola. The hyperbola consists of two separate pieces. 

For the sake of simplicity, we shall use a definition of the conic 

Chapters that depends only on the geometry of the plane. 

Def.  Ellipse. Let F  and F   be points in the plane and let a  be a fixed 

positive number such that a2  is greater  than the distance between F  and F  . 

A  point P  in the plane is on the ellipse determined by ,F F   and a2 if and 

only if the sum of the distances from P  to F  and from P  to F   equals a2 . 

Points F  and F   are the foci of the ellipse. 

To construct an ellipse, place two tacks in a plane, tie a string of length 

a2 to them, and trace out a curve with a pencil held against the string, 

keeping the string taut by means of the pencil point. 

The foci are at the tacks. 

Def. The four points on the ellipse that are the furthest from or the 

nearest to the center are called vertices. 

A circle does not have vertices. 

Find the four vertices of the ellipse by checking where the curve 

intersects the x and y axes. Setting 0y   in equation, we obtain ax   or 

ax  ; if we set 0x   in equation, we obtain by   or y b  . 

Thus the four vertices have coordinates ( ,0);( ,0), (0, ) (0, )a a b and b   Observe 

that the distance  from F orF   to (0, )b  is a . 

The right triangle with vertices F , (0, )b , and the origin, is a reminder of 

the fact that 2 2 2b a c  . 
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Keep in mind that in above ellipse a  is larger than b . The semimajor 

axis is said to have length a ; the semiminor axis has length .b  

Observe that we could interchange the roles of x  and y and produce an 

ellipse with foci on y axis. In this case, y  would have the larger denominator. 
 

Тable 9 

Basic definitions 

English Russian 

 

Ukrainian 

Conic Chapter коническое 

сечение 

конічний 

перетин 

Ellipse эллипс еліпс 

Curve кривая крива 

Bounded замкнутый замкнутий 

Cone конус конус 

Edge край, ребро край, ребро 

Parabola парабола парабола 

Hyperbola гипербола гіпербола 

For the sake of 

simplicity 

ради простоты  заради 

простоти 

Focus  фокус фокус 

To tie связывать, 

соединять 

зв'язувати, 

з'єднувати 

String нить нитка 

To trance чертить креслити 

Tout туго натянутый туго натягнутий 

To get rid of избавляться позбуватися 

Semimajor axis большая 

полуось 

більша піввісь 

Semiminor axis малая полуось мала піввісь 
 

Task 

1. Find the equation of the ellipse with foci at )3,0(  and )3,0(   such that 

the sum of the distances from a point on the ellipse to the two foci is 14. 

2. Sketch the graph of the equation 1
364

22


yx

 and its foci. 

Def. Hyperbola. Let F  and F   be points in the plane and let a  be a fixed 

positive number such that a2  is less than the distance between F  and F  . A point 

P  in the plane is on the hyperbola determined by F , F   and a2  if and only if the 

difference between the distances from P  to F  and from P  and F   equals a2  

( 2 )or a . Points F and F are called the foci of the hyperbola. 
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A hyperbola consists of two separate curves. 

Def. Asymptote. The lines x
b

a
y   and x

b

a
y   are called asymptotes 

of the hyperbola. 

It can be shown that the distance between points of hyperbola and points of 

its asymptotes approaches 0 when the points of the hyperbola move to infinity. 

Def. Parabola. Let L  be a line in the plane and let F  be a point in the plane 

which is not on the line. A  point P  in the plane is on the parabola determined by 

F  and L if and only if the distance from P  to F  equals the distance from P  to the 

line L . Point F  is the focus of the parabola; line L  is its directrix. The point on the 

parabola nearest the directrix is called the vertex of the parabola. 
 

2.1.4. Translation of axes and the graph of 

022  FEyDxCyAx  

The equation of any geometric object depends on where we choose to 

place the axes. Clearly, a wise choice of axes may yield a simpler way to 

choose convenient axes and uses the method to analyze equations. 

A point P has coordinates ( , )x y  relative to a given choice of axes. 

Another pair of axes is chosen parallel to the first pair with its origin at the 

point ( , )h k . Call the second pair of axes the yx  axes. 

Inspection of the figure shows that  

x x h   , y y k   , 

or equivalently, 

x x h  , y y k  . 

To transform the equation complete the square and use last formulas. 
 

Тable 10 

Basic definitions 

English Russian 

 

Ukrainian 

Branch ветвь гилка 

Upward вверх нагору 

Downward  вниз униз 

To approach приближаться наближатися 

Infinity бесконечность нескінченність 

Asymptote асимптота асимптот 

Directrix директриса директриса 

To complete the 

square 

выделить 

полный квадрат 

виділити повний 

квадрат 

Moreover кроме того  крім того 
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Task 

1. Using a suitable translation of axes, graph the equations relative 

to the xy  axes:  

a) 2)1(  xy . 

b) 2)1(22  xy . 

c) 20122 2  xxy . 

d) 0271849 22  xyx . 
 

2.1.5. Planes 

A vector n is said to be perpendicular to a plane if n is perpendicular to 

every line situated in the plane. 

We will consider the theorem, giving an algebraic condition that a point 

0 0 0( , , )x y z must satisfy to be in a particular  plane. 

Theorem 3. An equation of the plane, passing through ),,( 000 zyx and 

perpendicular to the nonzero vector kCjBiA  is given by 

.0)()()( 000  zzCyyBxxA  

Theorem 4. Let CBA ,, and Dbe constant such that not all BA, and 

C are .0  Then the equation 0 DCzByAx describes a plane. Moreover, 

the vector kCjBiA  is perpendicular to this plane. 

Theorem 5. The distance from the point ),,( 111 zyx to the plane 

0111  DCzByAx is 
222

111

CBA

DCzByAx




. 

An equation of the plane determined by three points. 

Let we have three points ),,,( 1111 zyxT  ),,( 2222 zyxT and ).,,( 3333 zyxT  If 

they don’t lie on a single line, they determine a unique plane passing through 

them. Its equation is given by 
1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

0

x x y y z z

x x y y z z

x x y y z z

  

   

  

. 

An angle between two planes. 

The angle between two planes is defined to be the angle between their 

normals, chosen so that the angle is at most .
2


 

If the planes are perpendicular, the angle between them is ,
2


hence 

.0212121  CCBBAA  If  the planes are parallel, their normals are parallel 

too, thus .
2

1

2

1

2

1

C

C

B

B

A

A
  
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Task 

1. Find the distance from the point )0,0,0( to the plane that passes 

through )1,2,3(  and is perpendicular to vector .2 kji   

2. How far is the point )1,3,2(  from the plane determined by the points 

)1,1,1( , )3,2,1(  and )4,1,3(  ? 

 

2.2. Lines in space 

Vectors provide a neat way to treat the geometry of lines in space. 

Consider the line L through the point ),,( 0000 zyxP  and parallel to the 

vector 
1 2 3a a i a j a k   . A point ),,( zyxP  is on this line, if and only if the 

vector PP0  is a parallel to a . One way to express that PP0  is parallel to a  is 

to assert that there is a scalar t  such that  

0P P ta ; 

id est, 
0 0 0 1 2 3( ) ( ) ( )x x i y y j z z k ta i ta j ta k        . 

Consequently, we have these parametric equations for the line through 

),,( 000 zyx  parallel to kajaiaa 321  . 















.30

20

10

tazz

tayy

taxx

 

Another way to express that PP0  is parallel to a  is to use the condition 

when two vectors are parallel:  

0 0 0

1 2 3

x x y y z z

a a a

  
  . 

If none of 321 ,, aaa  is 0 , the equations are called symmetric equations of 

the line. These nonparametric equations describe the line as the interChapter 

of two planes  

0 0

1 2

x x y y

a a

 
 , 0 0

2 3

y y z z

a a

 
 . 

And this is the third way to determine the line in space. 

Def. Direction numbers of the line. If vector kajaiaa 321   is 

parallel to the L  then vector a is called direction vector of .L  

Note that direction numbers and vector are not unique. 

Equation of the line through two points. 

Let we have two points ),,( 1111 zyxP  and 2 2 2 2( , , )P x y z . In order to find the 

equation of the line through these points we can choose the vector 21PP  as the 

direction vector of the line. Having substituted its coordinates into symmetric 
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equations of the line we find 1 1 1

2 1 2 1 2 1

x x y y z z

x x y y z z

  
 

  
. 

 
Тable 11 

Basic definitions 

English Russian 

 

Ukrainian 

Neat стройный, 

лаконичный 

стрункий, 

лаконічний 

To assert утверждать затверджувати 

Direction 

numbers 

направляющие 

числа 

напрямні числа 

Direction vector направляющий 

вектор 

напрямний вектор 

Parametric параметрический параметричний 

Set множество множина 

 

Task 

1. Find the angle between the line through )0,0,0(  and )1,1,1(  and the 

plane through (1,2,3) , (4,1,5) , and )6,0,2( . 

2. How far apart are the planes parallel to the plane 2 5 1 0x y z     that 

pass through the points )3,2,1(  and ?)4,0,1(  

3. Where does the line through )1,2,1(  and )1,1,3(  meet the plane 

determined by the points (2, 1,1), (5,2,3)  and ?)3,1,4(  

4. Graph the plane and show its intercepts. 1
2 3 4

x y z
    

 

2.2.1. Graph of equations 

The set points ),,( zyx  that satisfy some given equation in yx,  and 

z is called the graph of that equation. For instance, the graph of the 

equation 0Ax By Cz D    , where not all of BA,  and C  are ,0 is a plane. 

Def. Cylinder. Let R  be a set in a plane. The set formed by all lines that 

are perpendicular to the given plane and that meet R  is called the cylinder 

determined by .R  

Keep in mind that if an equation involves at most two of the letters yx,  

and z , its graph will be a cylinder in the space. 

Def. The set of all points that are a fixed distance r  from a given point 

),,( cba  is a sphere of radius r  and center ),,( cba . 

To sketch this sphere, show the horizontal equator. 
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A point ),,( zyx is on this sphere when the distance between it and 

),,( cba  is r . 

Def. The graph of 
2 2 2

2 2 2
1

x y z

a b c
   , where cba ,,  are positive constants, is 

called an ellipsoid. 

In the special case when cba   the equation becomes the equation of 

a sphere of radius .a  

An ellipsoid meets the coordinate planes in ellipses.  

To find where the ellipsoid meets a given axis, set the variables 

corresponding to the other two axes equal to .0  

The graph of 1222  zyx  is the sphere of radius 1and center at the 

origin. By changing some of the plus signs to minus signs, we get new 

equations and graphs that are quite different from spheres. 

If we make all three coefficients negative, the equation becomes 
2 2 2 1x y z    , or 2 2 2 1x y z    . Since the left part of the equation is the 

sum of squares of real numbers, it is never negative; thus there are no 

points on that graph. 

Next, the graphs of 1222  zyx  and 2 2 2
1x y z    turn out to be of 

interest and will introduce the “hyperboloid of one sheet” and “hyperboloid 

of two sheets”. 

Def. For any positive numbers cba ,,  the graph of 
2 2 2

2 2 2
1

x y z

a b c
    is 

called a hyperboloid of two sheets. 

Cross Chapters by planes parallel to the yzplane are ellipses, single 

points, or else empty. The cross Chapters by the xy  and the xz  planes are the 

hyperbolas. 

Two minuses and one plus in any arrangement give a hyperboloid of 

two sheets. 

Revolving the hyperbola 
2 2

2 2
1

x y

a b
   about the x  axis produces a 

hyperboloid of two sheets; revolving it about the y  axis a hyperboloid of one 

sheet. 
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Тable 12 

Basic definitions 

English Russian 

 

Ukrainian 

Cylinder цилиндр циліндр 

To erect сооружать, 

создавать 

споруджувати, 

створювати 

Sphere сфера сфера 

Radius радиус радіус 

Ellipsoid эллипсоид еліпсоїд 

Various различный різний 

Hyperboloid of 

one sheet 

однополостный 

гиперболоид 

однополий 

гіперболоїд 

Hyperboloid of 

two sheets 

двуполостный 

гиперболоид 

двуполий 

гіперболоїд 

Revolution поворот поворот 
 

Task 

Sketch the given surfaces, showing any useful cross Chapter. Also 

describe its general appearance in words: include  a description of cross 

Chapters and intercepts and tell whether it a surface of revolution. 

a) 2 2 2 4 2 4 0x y z y z      , 

b) 
2 2

2 1
4 9

x y
z   , 

c) 2 2 1x z  , 

d) 
2

2 2 1
4

y
x z   , 

e) 2 2 2 1x y z    , 

f) 2 0y x  . 
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Chapter 3. CALCULUS. FUNCTIONS 

 

Def. Let X  and Y  be sets. A function from X  to Y  is a rule or method 

for assigning to each element in X  a unique element in .Y  

A function may be given by a formula or a graph. It is often indicated 

by a table. 

Def. Let X  and Y  be sets and let f  be a function from X  to Y . The set 

X  is called the domain of the function. It ( )f x y , y is called the value of f  

at x . The set of all values of the function is called the range of the function. 

 

The value )(xf  of a function f  at x  is also called the output, x  is 

called the input or argument. 

If ( )y f x , the symbol x  is called the independent variable and the 

symbol y  is called the dependent variable. 

If both the inputs and outputs of a function are numbers, we shall call 

the function numerical or a real function of a real variable. 

Def. Graph of a numerical function. Let f  be a numerical function. 

The graph of f  consists of those points ),( yx  such that ( )y f x . 

Def. Composition of functions. Let f  and g  be functions. Suppose that 

x  is such that )(xg  is in the domain of .f Then the function that assigns to x  

the value ))(( xgf  is called the composition of f  and g . It is denoted f g . 

In other words to compute gf  , first apply g and then apply f to the result. 

Certain functions behave nicely when composed with the function x . 

Def. Even function. A function f such that )()( xfxf   is called an 

even function. 

Def. Odd function. A function f  such that )()( xfxf   is called an 

odd function. 

Most functions are neither even no odd. 

The graph of an even function is symmetric with respect to the y  axis. 

The graph of an odd function is symmetric with respect to the origin. 

Def. A function f  that assigns distinct outputs to distinct inputs is 

called a one-to-one function. 

The graph of a one-to-one function has the property that every 

horizontal line meets it in at most one point. 

Def. If )()( 21 xfxf   whenever 1 2x x , then f is an increasing function.  

If )()( 21 xfxf   whenever 1 2x x , then f  is a decreasing function. 
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These two types of functions are also called monotonic. 

Def. Let )(xfy   be a one-to-one function. The function g  that 

assigns to each output of f  the corresponding unique input is called the 

inverse of .f  

 
Тable 13 

Basic definitions 

English Russian Ukrainian 

To indicate показывать, 

представлять 

показувати, 

представляти 

 

Domain область 

определения 

область 

визначення 

Range область 

значений 

область значень 

Independent 

variable 

независимая 

переменная 

незалежна 

змінна 

To compose составлять складати 

Composition of 

functions 

функция от 

функции, 

сложная 

функция 

функція від 

функції, складна 

функція 

Even function четная функция парна функція 

Odd function нечетная 

функция 

непарна функція 

One-to-one однозначная 

функция 

однозначна 

функція 

Increasing 

function 

возрастающая 

функция 

зростаюча 

функція 

Decreasing 

function 

убывающая 

функция 

убутна функція 

Monotonic монотонный монотонний 

 

Task 

1. Describe the domain and range of the functions:  

a) 
1

( )
1

f x
x




; b) 
2

1
( )

1
f x

x



;  c) 2

3( ) log (4 )f x x  . 

2. For the given function evaluate and simplify the given expression 

a) 3( )f x x , )()1( afaf  . 

b) 
1

( )f x x
x

  ; 
( ) ( )f u f v

u v




. 
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3. Express the given functions as compositions of two or more simpler 

functions. 

a) 
1

1 2x
y 


; b) sin(3 )y x  . 

4. Let ( ) sinf x x . Is f  one-to-one if the domain is taken to be: 

a) the entire x  axis? 

b) the interval ]2,0[  ? 

c) the interval ],0[  ? 

d) the interval ]
2
,
2

[


 ? 

 

3.1. The limit of a function 

The concept of a limit provides the foundation for both the derivative 

and the integral. 

Consider a function f and a number awhich may or may not be in the 

domain of .f  In order to discuss the behavior of )(xf for xnear a , we must 

know that the domain of f contains numbers arbitrary close to .a  Note how 

this assumptions is built into the following definitions. 

Def. Limit of )(xf at .a  Let f be a function and a some fixed number. 

Assume that the domain of f contains open intervals ),( ac and ).,( ba  If there 

is a number Lsuch that as x approaches a , either from the right or from the 

left, )(xf approaches L , then L is called the limit of )(xf as x  approaches .a  
 

3.1.1. One-sided limits 

Def. Right-hand limit of )(xf at .a  Let f be a function and a some fixed 

number. Assume that the domain of f contains an open interval ).,( ba If, as 

x approaches a from the right, )(xf  approaches a specific number L , then 

L is called the right-hand limit of )(xf  as x  approaches .a  

It is read “the limit of f of x as x approaches a from the right is L”. 

The left-hand limit is defined similarly. The only differences are that 

the domain of f must contain an open interval of the form ),( ac and )(xf is 

examined as x approaches a from the left. 

Note that if both the right-hand and the left-hand limits of f exist 

at aand are equal, then the limit of )(xf as ax exists. But if the right-

hand and the left-hand limits  are not equal, then the limit of )(xf as 

ax does not exist. 

The tamest function are the constant function. A constant function 
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assigns the same output to all inputs. If that fixed output is ,L  then 

Lxf )( for all x . The graph of this function is a line parallel to the x axis. 

Sometimes it is useful to know how )(xf  behaves when x is very large 

positive number or a negative number of large absolute value. 

Rather than writing “as x  gets arbitrary large through positive values, 

)(xf  approaches the number L”, is customary to use the shorthand  

It could be happen that as x  a function  )(xf  becomes and 

remains arbitrarily large and positive. 

It is important, when reading the shorthand ,)(lim 


xf
x

 to keep in 

mind that “ ” is not a number. 
 

Тable 14 

Basic definitions 

English Russian Ukrainian 

Limit предел границя 

Derivative производная похідна 

Integral интеграл інтеграл 

Behavior поведение поведінка 

Arbitrary close сколь угодно 

близкие 

як завгодно 

близькі 

One-sided limit односторонний 

предел 

однобічна 

границя 

Right-hand limit правосторонний 

предел 

правобічна 

границя 

Left-hand limit левосторонний 

предел 

лівостороння 

границя 

Tame элементарный, 

простой 

елементарний, 

простій 
 

Task 

Graph the function 
0

( ) 1 0

2 0

x if x

f x if x

if x

 

 









 

and find 

a) )(lim xf
x 

;  

b) )(lim
0

xf
x 

; 

c) )(lim
0

xf
x 

; 
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d) )(lim xf
x 

; 

e) )0(f . 

 

3.1.2. Properties of limits 

Theorem. Let f  and g  be two functions and assume that )(lim xf
ax

 and 

)(lim xg
ax

 both exist. Then  

1. lim( ( ) ( )) lim ( ) lim ( )
x a x a x a

f x g x f x g x
  

   , id est the limit of the sum of two 

functions exists and equals the sum of the two given limits. This property 

extends to any finite sum of functions. 

2. lim ( ) ( ) lim ( ) lim ( )
x a x a x a

f x g x f x g x
  

  . In particular, if ( )g x k , where k  is any 

constant, lim ( ) lim ( )
x a x a

kf x k f x
 

 . Similarly this property extends to the product of 

any finite number of functions. 

3. 
lim ( )( )

lim
( ) lim ( )

x a

x a

x a

f xf x

g x g x







  if lim ( ) 0
x a

g x


  

4. 
lim ( )

( )
lim ( ) (lim ( )) x a

g x
g x

x a x a

f x f x 

 

  if lim ( ) 0
x a

f x


  

 

3.1.3. Limits of a polynomial as x  or x  

It can be shown that if, as x , )(xf  and ( ) 0g x L  , then 

lim ( ) ( )
x

f x g x


   . 

Def. A polynomial is a function of the form 1

1 0...n n

n na x a x a

   , where 

naaa ,...,, 10  are fixed real numbers and n  is a nonnegative integer. If na  is not 

0 , n is the degree of the polynomial.  

Let )(xf  be a polynomial of degree at least 1 and with the lead 

coefficient na  positive. 

Then lim ( )
x

f x


  . 

It the degree of f  is odd, then lim ( )
x

f x


  . 

 

3.1.4. A contest between a large numerator and a large denominator 

Let )(xf  be a polynomial and let nax  be its term of highest degree. Let 

)(xg  be another polynomial and let mbx  be its term of highest degree. 

Then 
( )

lim lim
( )

n

mx x

f x ax

g x bx 
 . 

In short, when working with the limit of a quotient of two polynomials 
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as x  or as x   , disregard all terms except the one of highest degree in 

each of the polynomials. 
 

Тable 15 

Basic definitions 

English Russian 

 

Ukrainian 

To extend распространять поширювати 

Finite конечный кінцевий 

Polynomial полином, 

многочлен 

поліном, 

багаточлен 

Degree степень ступінь 

Lead coefficient старший 

коэффициент 

старший коефіцієнт 

To disregard пренебречь зневажити 

 

Let ( )P x  be a polynomial of n , with lead term nax , 0a  , and let ( )Q x  be 

a polynomial of degree m , with lead term mbx , 0b  . Examine 
( )

lim
( )x

P x

Q x

 if 

a) m n , b) m n , c) m n . 

1. Given that lim ( )
x

f x


   and lim ( )
x

g x


  , discuss  

a) lim( ( ) ( ))
x

f x g x


 . 

b) lim( ( ) ( ))
x

f x g x


 . 

c) lim ( ) ( )
x

f x g x


. 

d) 
( )

lim
( )x

f x

g x

. 

 

3.1.5. Computations of limits 

The technique of factoring out a power of x applies more generally than 

just to polynomials. 

It was assumed that 

lim ( ( )) (lim ( ))
x x

f g x f g x
 

 . 

For the functions f  commonly met in calculus this switch of the order 

of lim""  and "" f  is justified. 

In case   it is not immediately clear how this difference behaves. It 

is necessary to use a little algebra and rationalize the expression. 
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3.1.6. Asymptotes and their use in graphing 

Def. If lim ( )
x

f x L


 , where L  is a real number, the graph of )(xfy   

gets arbitrary close to the horizontal line Ly   as x increases. The line 

Ly   is called a horizontal asymptote of the graph of .f  An asymptote 

is defined similarly if ( )f x L as x   . 

Def. If lim ( )
x a

f x




   or if lim ( )
x a

f x


 , the graph of )(xfy   

resembles the vertical line ax   for xnear a . The line ax  is called a 

vertical asymptote of the graph of .f A similar definition holds if 

lim ( )
x a

f x




 or lim ( )
x a

f x




  . 

Def. The line bkxy   is a tilted asymptote of ( )f x  if the function 

)(xf  may be represented of the form 

( ) ( )f x kx b x   , 

where lim ( ) 0
x

x


 . 

Theorem. In order to the graph of the function )(xf  have a tilted 

asymptote, it is necessary and suffices to exist the limits. 
( )

lim
x

f x
k

x

  and lim( ( ) )
x

f x kx b


   

or 
( )

lim
x

f x
k

x

  and lim ( ( ) )
x

f x kx b


  . 

 

Тable 16 

Basic definitions 

English Russian Ukrainian 

Commonly met часто 

встречающийся 

що часто 

зустрічається 

Switch перестановка перестановка 

To resemble быть похожим бути схожим 

Tilt наклон нахил 
 

Task 

1. Examine the given limits: 

a) )50100(lim 22 xxxx
x




. 

b) 
24

42
lim

2

2





 x

xx

x
. 

c) 
2

1 )1(

1
lim

 xx

. 
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d) 
12

1
lim
0 

x
x

. 

2. Use asymptote to sketch the graphs of the functions: 

a) 
2)1(

1
)(



x

xf . 

b) 
23

1
)(

xx
xf


 . 

c) 
2

2 1

x
y

x



. 

 

3.1.7. The limit of  /)(sin  as  approaches 0  

So far we found limits by algebraic means, such as factoring, 

rationalizing, or canceling. But some of the most important limits in calculus 

cannot be found so easily. To reinforce the concept of a limit and also to 

prepare for the calculus of trigonometric functions, we shall determine 

0

sin
lim





. 

Since both the numerator and the denominator, approach 0 , this is a 

challenging limit. 

Theorem 1. Let sin  denote the sine of an angle of  radians. Then 

0

sin
lim 1





 . 

The Squeeze Principle. If )()()( xhxfxg   and lim ( )
x a

g x L


  and 

lim ( )
x a

h x L


 , then lim ( )
x a

f x L


 . 

Theorem 2. Let cos  denote the cosine of an angle of   radians. Then 

0

1 cos
lim 0







 . 

This implies that when   is small, 1 cos  is much smaller than  . 

From a practical point of view these limits showed that if angles are 

measured in radians, then the sine of a small angle is “roughly” the angle 

itself, that is sin x x . 

Def. If lim ( ) 0
x a

x


 , lim ( ) 0
x a

x


  and 
( )

lim 1
( )x a

x

x




 , then the functions ( )x  and 

( )x  are equivalent. It may be proved that the following functions are 

equivalent as 0x : 
sin tan arcsin arctanx x x x x     
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3.1.8.  Natural logarithms 

Let’s discuss the limits:   
1

0

lim(1 ) x

x

x


  and   
1

lim(1 )x

x x
 . 

a) As 0x , the base 1 x  approaches 1 and the exponent 
1

x
 approaches 

 . The base 1influences the exponential function to be 1. The exponent 

 influences the exponential function to be large. Thus this is a challenging 

limit. 

b) As x  , the base 
1

1
x

  approaches 1and the exponent x approaches 

 . So this is the same case. 

It was proved that both the limits exist and are equal. 

Their value is denoted by number e  and it is approximately equal to 

2,718e  … 

Thanks to its useful properties the number e  was chosen as a base of a 

special type of logarithm. It is called natural logarithm and is denoted ln x . 

That is ln logex x . 
 

Тable 17 

Basic definitions 
 

English Russian Ukrainian 

To reinforce усиливать, 

подкреплять 

підсилювати, 

підкріплювати 

To challenge требовать 

(внимания) 

вимагати 

(уваги) 

Radian радиан радіан 

Squeeze сжатие стиск 

To imply подразумевать  мати на увазі 

Roughly грубо, 

приблизительно 

грубо, 

приблизно 

Estimate оценка оцінка 

Base основание 

степени 

основа степеня 

Exponent показатель 

степени 

показник 

степеня 

Logarithm логарифм логарифм 
 

Task 

Examine the limits: 

a) 
2

0

cos1
lim










. 
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b) cothlim
0
h

h
. 

c) 
3

0

cos1
lim

x

x

x




. 

1. What is domain of the function 

x

x
xf

sin
)(    ? 

Show that )(xf  is an even function. 

Find lim ( )
x

f x


. 

2. Find the limits 

a) x

x
x

3

0
)51(lim 


. 

b) x

x x

x 2)
4

(lim 




. 

 

3.2. Continuous functions 

Usually we expect the output of a function at the input a  to be closely 

connected with the outputs of the function at inputs that are near a . The 

functions of interest in calculus usually behave in the expected way; they 

offer no spectacular gaps or jumps. The graphs of these functions consist of 

curves or lines, not wildly scattered points. The technical term for these 

functions is “continuous”. 

Def. Continuity from the right at a number a . Assume that )(xf  is 

defined at a  and in some open interval ( , )a b . Then the function f is 

continuous at a  from the right if lim ( ) ( )
x a

f x f a


 . 

This means that 

1. lim ( )
x a

f x




 exists and 

2. that limit is ( )f a . 

Def. Continuity at a number a . Assume that )(xf  is defined in some 

open interval ),( cb  that contains the number a . Then the function f  is 

continuous at a if lim ( ) ( )
x a

f x f a


 . This means that  

1. lim ( )
x a

f x


 exists and 

2. that limit is ( )f a . 

Def. Continuous function. Let f  be a function whose domain is the x  

axis or is made up of open intervals. Then f  is a continuous function if it is 

continuous at each number a  in its domain. 

Only a slight modification of the definition is necessary to cover 
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functions whose domain involve closed intervals. We will say that a function 

whose domain is the closed interval ],[ ba  is continuous if it is continuous at 

each point in the open interval ( , )a b , continuous from the right at a , and 

continuous from  the left at b . 

If f  and g  are defined at least in an open interval that includes the 

number a  and if f  and g  are continuous at a , then so are f g , gf  , fg . 

Moreover, if ( ) 0g a  , 
g
f  is  also continuous at a . 

Let f  be a continuous function. If g  is some other function for which  

lim ( ( )) (lim ( ))
x a x a

f g x f g x
 

 . 

That is for continuous f , "" f  and lim""  can be switched. 
 

Тable 18 

Basic definitions 

English Russian Ukrainian 

Continuous непрерывный безперервний 

Spectacular эффектный ефектний 

Gap разрыв розрив 

To scatter разбрасывать розкидати 

To amount равняться рівнятися 

Slight незначительный незначний 
 

Task 

1. Let )(xf  equal the least integer that is greater or equal to x . For 

instance, (3) 3f  , (3, 4) 4f  , (3,8) 4f  . This function is sometimes denoted ][x  

and called the “ceiling” of x . 

a) Graph f . 

b) Does )(lim
4

xf
x 

 exist? If so, what is it? 

c) Does )(lim
4

xf
x 

 exist? If so, what is it? 

d) Does )(lim
4
xf

x
 exist? If so, what is it? 

e) Is f  continuous at ?4  

f) Where is f  continuous? 

g) Where is f  not continuous? 

2. Let 2)( xxf   for 1x and let xxf 2)(   for .1x  

a) Graph .f  

b) Can )1(f  be defined in such a way that f  is continuous throughout 

the x  axis? 
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3.3. The Maximum-Value Theorem and the Intermediate-Value 

Theorem 

Continuous function have two properties of particular importance in 

calculus: the “maximum-value” property and the “intermediate-value” 

property.  

The first theorem asserts that a function that is continuous throughout 

the closed interval ],[ ba  takes on a largest value somewhere in the interval. 

It also takes on a smallest value. 

 

3.3.1. Maximum-Value and Minimum-Value Theorem 

Let f  be continuous throughout the closed interval ],[ ba . Then there is 

at least one number in ],[ ba  at which f  takes on a maximum value. 

That is, for some number c  in [ , ]a b . 

)()( xfcf   for all x  in [ , ]a b . 

Similarly, f  takes on a minimum value somewhere in the interval. 

To persuade yourself that this theorem is plausible, imagine sketching 

the graph of a continuous function. As your pencil moves along the graph 

from some point on the graph to some other point on the graph, it passes 

through a highest point and also through the lowest point. 

The maximum value theorem guarantees that a maximum value exists, 

but it does not tell how to find it. 

The maximum and the minimum values of a function are called its 

extreme values or extrema. 

To apply the maximum-value theorem, we must know that the function is 

continuous and the interval is closed, that is contains its endpoints: It can be shown 

that if either of these assumptions is deleted, the conclusion may be wrong. 

 

3.3.2. Intermediate-Value Theorem 

Let f  be continuous throughout the closed interval [ , ]a b . Let m  be any 

number between )(af  and ( )f b . (That is, )()( bfmaf   if ( ) ( )f a f b , or 

)()( bfmaf   if )()( bfaf  ). Then there is at least one number c  in ],[ ba  

such that ( )f c m . 

In other words, the intermediate value theorem reads:  

A continuous function defined on ],[ ba  takes on all values between 

)(af  and )(bf . It asserts that a horizontal line of height m  must meet the 

graph of f  at least once if m  is between )(af  and ( )f b . 
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When you move a pencil along the graph of a continuous function from 

one height to another, the pencil passes through all intermediate heights. 

1. If a continuous function defined on an interval is positive somewhere 

in the interval and negative somewhere in the interval, then it must be 0  at 

some number in that interval. 

2. To show that two functions are equal  at some number in an interval, 

show that their difference is 0at some number in the interval. 
 

Тable 19 

Basic definitions 

English Russian Ukrainian 

Intermediate промежуточный, 

средний 

проміжний, 

середній 

Persuade убеждать переконувати 

Extreme value, 

extrema 

экстремум екстремум 

Endpoint граничные точки межові точки 

To attain достигать досягати 

To guarantee гарантировать гарантувати 
 

Task 

1. Does the function 
734

2





xx

xx
 have a maximum value and a minimum 

value for x  in [1,5]? 

2. Show that the equation 023 45  xxx  has at least one root in the 

interval [0,1] . 

3. Use the intermediate value theorem to show that the equation 

25113 23  xxx  has a solution. 

4. Let 
1

( )f x
x

 , 1a   , 1b  , 0m  . Is there at least one c  in ],[ ba  such 

that ( ) 0f c  ? 

If so, find c , if not, does this imply that the intermediate-value theorem 

is sometimes false? 
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Chapter 4. THE DERIVATIVE 

One of the most important concepts of calculus is the derivative. It has 

a great number of applications. 

First of all we will consider a few problems which at first glance may  

seem unrelated. But a little arithmetic will quickly show that they are all just 

different versions of one mathematical idea. 

Problem Slope. What is the slope of the tangent line to the graph of 
2xy   at the point 0 0( , )P x y ? 

The slope of nonvertical line equals the quotient 2 1

2 1

y y

x x




, where 

),( 111 yxP , ),( 222 yxP  are any distinct points on the line. 

By the tangent line to a curve at a point Pon the curve shall be meant 

the line through P  that has the “same direction” as the curve at .P  

In this case we formed a difference quotient,  

inputsofdifference

outputsofdifference

__

__
, and 

 examined its limit as the change in the inputs was made smaller and smaller. 

The whole procedure can be carried out for another problems, for 

example seeking 

- the velocity of a particle moving on a line, 

- the density, 

- the growth rate, 

- the rate of profit 

- the rate of change of any function. 

The underlying common theme of these problems is the important 

mathematical concept, the derivative of a numerical function. 

Def. The derivative of a function at the number x . Let f  be a function 

that is defined at least in some open interval that contains the number x . If 

h

xfhxf

h

)()(
lim
0




 exists it is called the derivative of f  at x  and is denoted 

( )f x . The function is said to be differentiable at x . 

Def. Velocity and speed of a particle moving on a line. The velocity at time 

t  of an object whose position on a line at time t  is given by )(tf  is the derivative 

of f at time t . The speed of the particle is the absolute value of the velocity. 

Def. Density of material. The density at x  of material distributed along a 

line in such a way that the left-hand x  centimeters have a mass of )(xf  grams is 

equal to the derivative of f  at x . 
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4.1. The derivative and continuity. Аntiderivatives 

If f is differentiable at each number x  in some interval, it is said to be 

differentiable throughout that interval. 

Theorem. If f  is differentiable at a , then it is continuous at a . 

Def. If f  and F  are two functions and f  is the derivative of F , then 

F  is called an antiderivative of f . 
 

Тable 20 

Basic definitions 

English Russian 

 

Ukrainian 

Slope наклон нахил 

Tangent касательная, тангенс дотична, тангенс 

Secant секущая, секанс січна, секанс 

Differentiable дифференцируемый диференційовний 

Velocity, speed скорость швидкість 

Particle частица частка 

Density плотность щільність 

To distribute распределять розподіляти 

Rate темп темп 

Antiderivative первообразная первісна 

Change in the 

function 

приращение функции приріст функції 

 

Task 

1. Let 3( )f x x . 

a) Graph f . 

b) On the graph show )(),(,,, xxfxfxxxx   and f  for 2x  and 

3,0x . 

2. How many different antiderivatives does the function )(xf  have? 

 

4.2. The Derivatives of the Sum, Difference, Product and Quotient 

Consider methods for differentiating functions. Before developing the 

methods, it will be useful to find the derivative of any constant function. 

Theorem 1. The derivative of a constant function is 0: 0c  . 

This theorem is no surprise: Since the graph of cxf )(  is a horizontal 

line, it coincides with each of its tangent lines. 

Also, if we think of x  as time and )(xf  as the position of a particle, 
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Theorem 1 implies that a stationary particle has zero velocity. 

Theorem 2. If U  and V  are differentiable functions, then so is U V . 

Its derivative is given by the formula ( )U V U V     . 

Similarly, ( )U V U V     . 

Theorem 2 extends to any finite number of differentiable functions. 

The following theorem concerns the derivative of the product of two 

functions. The formula is more complicated than that for the derivative of the 

sum. 

Theorem 3. If U  and V  are differentiable functions then so if UV . Its 

derivative is given by the formula ( )UV U V UV    . 

The theorem asserts that the derivative is the first function times the 

derivative of the second plus the second function times the derivative of the 

first. 

By Theorem 3 ( )cf cf  , where c is a constant, that is a constant factor 

can go past the derivative symbol. 

Theorem 4. If u and v are differentiable functions, then so is /u v  and  

2
( )
U VU UV

V V

 
   where, V  is not 0 . 

 

4.3. Composite Functions and the Chain Rule 

If f  and g  are differentiable functions, is the composite function 

)]([ xgf  also differentiable? If so, what is its derivative? More concretely: If 

)(Ufy   and ( )U g x , then y is a function of x . How can we find dy
dx

? 

The Chain Rule. If y is a differentiable function of u , and u is a 

differentiable function of x , then y  is a differentiable function of x  and  

dx

du

du

dy

dx

dy
 . 

That is, derivative of y  with respect to x  equals derivative of y  with 

respect to U  times derivative of U  with respect to x . 

The chain rule extends to a function built up as the composition of three 

or more functions. 
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Тable 21 

Basic definitions 

English Russian Ukrainian 

Differentiating дифференцирование диференціювання 

Stationary стационарный стаціонарний 

To go past the 

symbol 

вынести за знак винести за знак 

Composite сложный складний 

Chain цепь ланцюг 

To allege приписывать, 

утверждать голословно 

приписувати, 

сверджувати 

голослівно  
 

Task 

1. Tell what is wrong with this alleged proof  that 2 1 . 

Observe that xxxxxx  ....2  ( x  times). 

Differentiation with respect to x  yields the equation 1...112 x  

( 1 )x s . Thus 2x x . Setting 1x  shows that 2 1 . 

2. Let f  and g  be differentiable functions. Shows that  

a) 
( )fg f g

fg f g

  
  . 

b) 
( )
f

f gg

f f g
g


 

  . 

3. Find an equation of the tangent line to the curve 23 2xxy   at 

(1, 1) . 
 

4.4. Applications of the derivative. Rolle’s Theorem and the Mean-

Value Theorem 

Let f  be a differentiable function defined at least on closed interval [ , ]a b . 

Because it is differentiable it is necessarily continuous. Hence the function f  must 

take on a maximum value for some number c  in [ , ]a b . That is, for some number c  

in ],[ ba  ( ) ( )f c f x  for all x  in [ , ]a b . What can be said about ( )f c ? 

First, if c  is neither a  no b , that is c  is in the open interval ( , )a b , it 

seems likely that   tangent to the graph at ( , ( ))c f c  would be parallel to the 

x axis, in which case ( ) 0f c  . 

If, instead, the maximum occurs at an endpoint of the interval, at aor at 

b , the derivative at such a point need not be 0 . 
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4.5. Theorem of the Interior Extremum 

Let f  be   function defined at least on the open interval ),( ba . If f  

takes on a extremum value at a number c  in this interval and if )(cf   exists, 

then ( ) 0f c  . 

Def. A line segment joining two points on the graph of a function f  is 

called a chord of f . 

Assume that a certain differentiable function f  has a chord parallel to 

the x  axis. It seems reasonable that the graph will then have at least one 

horizontal tangent line. 
 

4.6. Rolle’s Theorem 

Let f  be a continuous function on the closed interval ],[ ba  and have a 

derivative at all x  in the open interval ( , )a b . If ( ) ( )f a f b , then there is at 

least one number c  in ),( ba  such that ( ) 0f c  . 

Rolle’s theorem asserts that if the graph of a function has a horizontal 

chord, then is has a tangent line parallel to that chord. The mean-value 

theorem is a generalization of Rolle’s theorem, since it concerns any chord of 

f , not just horizontal chords. In geometric terms, the theorem asserts that if 

you draw a chord for the graph, then somewhere above or below that chord 

the graph has at least one tangent line parallel to the chord. 
 

4.7. Mean-Value theorem 

Let f  be a continuous function on the closed interval ],[ ba  and have a 

derivative at every x  in the open interval ( , )a b .Then there is at least one 

number c in the open interval ),( ba  such that 
( ) ( )

( )
f b f a

f c
b a


 


. 

Corollary 1. If the derivative of a function is 0 throughout an interval 

then the function is constant throughout that interval. 

Corollary 2. If two functions have the same derivatives throughout an 

interval, then they differ by a constant. That is, if )()( xgxf   for all x  in an 

interval, then there is a constant c such that ( ) ( )f x g x c  . 

Corollary 3. If f  is continuous on ],[ ba  and has a positive (negative) 

derivative on the open interval ( , )a b , than f  is increasing (decreasing) on the 

interval [ , ]a b . 

 

 

 

 



45 

Тable 22 

Basic definitions 

English Russian Ukrainian 

To occur иметь место, 

случаться, 

попадаться 

мати місце, 

траплятися, 

попадатися 

Interior внутренний внутрішній 

Chord хорда хорда 

Mean-value 

theorem 

теорема о среднем 

значении 

теорема про 

середнє значення 

Generalization обобщение узагальнення 

Corollary заключение, 

следствие, вывод 

висновок  

  

Task 

1. Consider the function 2)( xxf   only for x in [ 1, 2] . 

a) graph the function )(xf  for [ 1, 2]x  . 

b) what is the maximum value of )(xf  for x in the interval 

[ 1, 2] ? 

c) does )(xf   exist at the maximum? 

d) does )(xf   equal 0  at the maximum? 

e) does )(xf   equal 0  at the minimum? 

2.  Consider the function 
2

1
)(
x

xf   

a) graph 
2

1
)(
x

xf   for x  in [ 1,1] . 

b) show that ( 1) (1)f f  . 

c) Is there a number c  in )1,1(  such that ( ) 0f c  ? 

d) Why does this function not contradict Rolle’s theorem? 

3. Using Corollary 1 of the mean-value theorem show that 

xxxf 3sin3cos)( 22   is a constant. Find the constant. 
 

4.8. Using the derivatives and limits when graphing a function 

We’ll consider how to use the derivative and limits to help graph a 

function. Of particular interest will be this questions: 

Where is the derivative equal 0? 

Where is the derivative positive? Negative? 

How does the function behave for || x  large? 

Def. Critical number and critical points. A number c at which 0)(  cf  
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is called a critical number for the function f . The corresponding point 

))(,( cfc  on the graph of f  is a critical point on that graph. 

Def. Relative maximum (local maximum). The function f  has a 

relative (local) maximum at the number c if there is an open interval ),( ba  

around c  such that )()( xfcf   for all x  in ),( ba  that lie in the domain of f . 

A local or relative minimum is defined analogously. 

Def. Global maximum. The function f  has a global (absolute) 

maximum at the number c  if )()( xfcf   for all x  in the domain of f . A 

global minimum is defined analogously. 

By the theorem of the interior extremum, there is a close relation 

between a local extremum and critical points for a differentiable function. If a 

local extremum occurs at a number c  that lies within some open interval 

within the domain of f , then ( ) 0f c  . This  means that c is a critical number. 

However, a critical point need not be a local extremum. 

To determine whether a function has a local extremum at c , it is 

important to know how the derivative behaves for inputs near c . 
 

4.9. First–derivative test for local maximum at cx   

Let f  be function and let c  be number in its domain. Assume that 

numbers a  and b  exist such that bca   and 

1. f  is continuous on the open interval ),( ba . 

2. f  is differentiable on the open interval ),( ba , except possibly at c . 

3. )(xf   is positive for all cx  in the interval and is negative for all 

cx  in the interval. 

Then f  has a local maximum at c . 

A similar test, which “positive” and “negative” interchanged, holds for 

a local minimum. 
 

4.10. Higher derivatives 

If )(tfy   denotes position on a line at time t , then the derivative 
dt

dy
 

equals the velocity, and the derivative of the derivative, that is )(
dt

dy

dt

d
 equals 

the acceleration. 

Most functions f  met in applications of calculus can be differentiated 

repeatedly. 

Def. The derivatives )()( xf n  for 2n  are called the higher derivatives 

of f  and are equal to derivative of ( 1)n    th derivative. 
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Тable 23 

Basic definitions 

English Russian Ukrainian 

Relative (local) 

extrema 

относительный 

(локальный) 

екстремум 

відносний 

(локальний) 

екстремум 

Higher 

derivatives 

производные 

высших 

порядков 

похідні вищих 

порядків 

Acceleration ускорение прискорення 
 

Task 

1. Find the critical numbers of the given function and use the first – 

derivative test to determine whether a local maximum, a local minimum, or 

neither occurs there. 

a) 343 xx  . 

b) x
x

ln
2

2

 . 

c) 4)1( x . 

d) xex 22  . 

2. Graph the given function, showing any intercepts, asymptotes, 

critical points, or local or global exterma
4

3
2

2





x

x
. 

3. Find all functions )(xf  such that 0)()3( xf  for all x . 
 

4.10.1. Concavity and the Second Derivative 

Assume that )(xf   is positive for all x  in the open interval ),( ba . 

Since f   is the derivative of f  , it follows that f   is an increasing 

function throughout the interval ),( ba . In other words, if x  increases, the 

slope of the graph of )(xfy   increases as we move from left to right on 

that part of the graph corresponding to the interval ),( ba . The slope may 

increase from negative to positive values, or the slope may be positive 

throughout ),( ba  and increasing, or the slope may be negative throughout 

),( ba  and increasing. 

Def. Concave upward. A function f  whose first derivative is increasing 

throughout the open interval ),( ba  is called concave upward in that interval. 

It can be proved that where a curve is concave upward it lies above its 

tangent lines and below its chords. 
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Def. Concave downward. A function f  whose first derivative is 

decreasing throughout an open interval ),( ba  is called concave downward. 

Where a function is concave downward, it lies below its tangent lines 

and above its chords. The sense of concavity is a useful tool in sketching 

the graph of a function. Of special interest is the presence of a point on the 

graph where the sense of concavity changes. Such a point is called an 

inflection point. 

Def. Inflection point and inflection number. Let f  be a function and let   

be a number. Assume that there are numbers b  and c such that cab   and 

1. f  is continuous on the open interval ),( cb . 

2. f  is concave upward in the interval ),( ab  and concave downward in 

the interval ),( ca , or vice versa. 

The point ))(,( afa  is called an inflection point or point of inflection. 

The number a  is called an inflection number. Observe that if the second 

derivative changes sign at the number a , then a  is an inflection number. 

If the second derivative exists at an inflection point, it must be 0 . But 

there can be an inflection point even if f   is not defined there. 

 

4.10.2. The Second Derivative and local Extrema 

Let a  be a critical number for the function f  and assume that )(af   

happens to be negative. If f   is continuous in some open interval that 

contains a , then )(af   remains negative for a  suitably small open interval 

that contains a . This means that the graph of f  is concave downward near 

))(,( afa , hence lies below its tangent lines. In particular, it lies below the 

horizontal tangent line at the critical point ))(,( afa . Thus the function has a 

relative maximum at the critical number a . 

Theorem. Second – derivative test for relative maximum or minimum. 

Let f  be a function such that )(xf   is defined at least on some open interval 

containing the number a . Assume that )(af   is defined. If 

( ) 0, ( ) 0f a f a   then f  has a local maximum at a . Similarly, if 0)(  af  and 

0)(  af , then f  has a local minimum at a . 
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Тable 24 

Basic definitions 

English Russian Ukrainian 

Concavity вогнутость увігнутість 

 

Concave 

upward 

вогнутый вверх увігнутий 

нагору 

Concave 

downward 

вогнутый вниз увігнутий униз 

Inflection изменение 

(перегиб) 

зміна (перегин) 

Sense смысл, 

значение 

сенс, значення 

Presence присутствие присутність 

Extent размер, 

протяженность 

розмір, 

довжина 
 

Task 

1. Sketch the general appearance of the graph of the given function 

near )1,1( on the basis of the information given assume that f , f  , f   are 

continuous. 

a) 1)1( f , 0)1( f , 1)1( f ; 

b) 1)1( f , 0)1( f , 1)1( f ; 

c) 1)1( f , 0)1( f , 0)1( f  (sketch four possibilities). 

2. Graph the functions, showing any relative maxima, relative minima, 

and inflection points. 

a) 53x - 45x ; 

b) 
x

x 1

2

2

 . 
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4.11. General Procedure for Graphing a Function 
 

       Тable 25 

 General Procedure for Graphing a Function 

 Calculations Geometric Meaning 

Domain 1. Find where )(xf  is 

defined 

Find horizontal extent of 

graph. 

Intercepts 2. Find )0(f  and the 

values of x  for which 
( ) 0f x   

Find where graph crosses 

the axes. 

Critical 

numbers 

3. Find where 

0)(  xf  

Find where the tangent 

line is horizontal. 

Increasing, 

decreasing 
4.Compute )(xf  at all 

critical numbers 

Data needed for critical 

points. 

 5. Find the values of x  

for which )(xf   is 

positive and those for 

which )(xf   is negative. 

Find where graph goes up 

and where it goes down as 

pencil moves to the right. 

Tilted 

asymptotes 
6. Find 

( )
lim
x

f x
K

x
  

and lim( ( ) )
x

f x kx


  

Find tilted asymptote 
y kx b   

Horizontal 

asymptotes 
7. Find )(lim xf

x 
 and 

)(lim xf
x 

 

Find horizontal 

asymptotes or general 

behavior when || x  is large. 

Vertical 

asymptotes 

8. Find the values of a  

where )(lim xf
ax 

 or 

)(lim xf
ax 

 is infinite 

Find vertical asymptotes. 

Concavity and 

inflection 

points 

9. Find the values of x  

for which )(xf   is 

positive and those for 

which )(xf   is negative. 

Note where it changes 

sign 

Find where the graph is 

concave upward and where it 

is concave downward. Note 

inflection points. 

 10. Sketch the graph 

showing intercepts, critical 

points, asymptotes, local 

and global maxima and 

minima, and inflection 

points. 
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4.12. Implicit Differentiation 

Sometimes a function )(xfy   is given indirectly by an equation that 

relates x  and y . It is said to describe the function implicitly.  

It is possible to differentiate a function given implicitly without having to 

solve for the function and express it explicitly. An example will illustrate the 

method, which is simply to differentiate both side of the equation that defines 

the function implicitly. This procedure is called implicit differentiation. 

The problem could also be solved by differentiating explicit function. 

But the algebra involved is more complicated. 
 

4.13. The Differential 

The applied sciences are greatly concerned with the errors that may 

occur in measurements. Let )(xfy   be a differentiable function. Then by 

the definition of a derivative, xy   is a good approximation of )(xf   when 

x  is small. But on the other hand when x  is small, the derivative )(xf   is a 

good estimate of xy  . 

Def. Let )(xfy   be a differentiable function. Then xxf  )(  is called 

the differential of f  and is denoted df  or dy : 

xxfdy  )( . 

The differential can also be viewed geometrically. A very short piece of 

the graph around a point P , of a differentiable function, looks straight and 

closely resembles a short segment of the tangent line to the graph at P . 

Thus the differential xxf  )(  represents vertical change along the tangent line. 

The differential can be used to estimate the value of a function at the 

input xx   in terms of information at x . 

How to use a differential to estimate an output of a function 

To estimate )(bf  

1. Find  a number a  near b  at which )(af  and )(af   are easy to calculate. 

2. Find abx  , x  may be positive or negative. 

3. Compute xafaf  )()( . This is an estimate of )(bf . In short 

)()()()( afabafbf  . 



52 

Тable 26 

Basic definitions 

English Russian 

 

Ukrainian 

Implicit неявный неявний 

Explicit явный, 

определённый 

явний, певний 

 

Task 

1. Find dxdy  at the indicated values of x  and y in two ways: 

explicitly (solving for y first) and implicitly. 

a) 2 2 12x y xy   at )1,3(   

b) 322  yx  at )1,2(  

2. Calculate the differentials, expressing them in terms of x  and dx . 

a) 
cos5

( )
x

d
x

. 

b) 21 xd  . 

c) )(tan 3xd . 

3. Use differentials to estimate the given quantities. 

a) 103 . 

b) 32Sin  (warning: First translate into radians) 
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Chapter 5.  INDEFINITE INTEGRAL. DEFINITE INTEGRAL 

IMPROPER INTEGRAL 

 

5.1. Indefinite integral 

5.1.1. The antiderivatives and the indefinite integral 

Def. If F'(x) = f(x), then F(x) is an antiderivative of f(x). 

 If f(x) is a continuous function, then its antiderivative exists. 

Theorem. If F(x) and G(x) are both antiderivatives of f(x) on an 

interval [a,b], then there is a constant C such that  

F(x)= G(x) + C 

Def. A set of all antiderivatives of f(x) is called an indefinite integral 

and is denoted 

 f(x)dx = F(x) + C 

where f(x) is called the integrand. 

The process of finding an antiderivative is called integrating. 

Def. The graph of any antiderivative is called an integral curve. 

Every formula for a derivative provides a corresponding formula for an 

antiderivative. 

Theorem. If   f(x)dx = F(x) + C , then  f(ax + b)dx =1/a F(ax +b) + 

C for any constants a and b. 

Theorem. If  f(x)dx = F(x) + C, then   f(u)du = F(u) +C. 

 Where u= (x) is any differentiable function of x. 

 
Тable 27 

Basic definitions 

English Russian Ukrainian 

Antiderivative первообразная первісна 

Indefinite 

integral 

неопределенный 

интеграл 

невизначений 

інтеграл 

Integrand подинтегральная 

функция 

підінтегральна 

функція 

Integrating интегрирование інтегрування 

Integral curve интегральная 

кривая 

інтегральна крива 

 

Task 

1. Find dy/dx if y =  sin (x
2
)dx. 

2*. Verify the equation by differentiation 

Cax
a

x
ax

a
ax

a

x
axdxx  coscos

2
sin

2
sin

2

32

2  
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3. Compute the antiderivatives: 

a)   dxe x
2

1  ; 

b) 
 2218 x

dx
;      

c)   57x

dx
; 

d)  dx
e

e
x

x


1

. 

 

5.1.2. The substitution method 

The substitution technique changes the form of an integral to that of an 

easier integral. It is the most commonly used technique of integration. 

 A substitution is worth trying in two cases:  

1. The integrand can be written in the form of a product of a special 

type: function of u(x)  x  derivative of u(x) for some function u(x). 

2. The integrand becomes simpler when a part of it is denoted u(x). 

In order to apply the substitution technique to  find   f(x)dx look for a 

function  u = h(x) such that  f(x) = g(h(x)) h'(x), for some function g, or more 

simply,  f(x)dx = g(u)du. 

Then find an antiderivative of g and replace u by h(x) in this antiderivative. 

It is important to keep in mind that there is no simple routine method 

for antidifferentiation of elementary functions. 

Theorem. The substitution method. Let g(u) be a continuous function 

and let h(x) be a differentiable function. Assume that G(u) is an antiderivative 

of g(u). Then G(h(x)) is an antiderivative of g(h(x))h'(x). That is, if 

G(u)=g(u)du, then G(h(x))=g(h(x))h'(x)dx. 

 

5.1.3. Integration by parts 

 The formula for the derivative of a product is a basis for integration by parts.  

Theorem. Integration by parts. If U and V are differentiable functions, 

then  

UdV = UV - VdU.  

 The key to applying integration by parts is the labeling of U and  dV. 

Usually three conditions can be met:  

1. V can be found by integrating and should not be too messy. 

2. dU should not be messier then U. 

3. VdU should be easier than the original  UdV.  
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Тable 28 

Basic definitions 

English Russian  Ukrainian 

Substitution 

method 

метод 

подстановки 

метод 

підстановки 

Change of 

variables 

замена 

переменных 

заміна змінних 

Label обозначение позначення 

Messy вызывающий 

затруднения 

викликаючий 

труднощі 

Integration by 

parts 

интегрирование 

по частям 

інтегрування 

вроздріб 
 

Task 

1. Use appropriate substitutions to find the antiderivatives  

a) dx
e

e
x

x


 21

;
                             

b)  dt
t

t






1

1cos
;              c)  dxxx

2cos . 

2*. Jack (using the substitution u = cos) claims that 2cossind =-

cos
2, while Jill (using the substitution u = sin) claims that the answer is 

sin
2
. 

Who is right ? 

3. Find: 

a)  ln (7x – 1)dx; 

b)  (3x
2
 – 3x) sin2xdx. 

 

5.1.4. Integration by certain rational function. Integration of rational. 

Functions by partial fractions 

Any rational function can be written of the form 
 
 xQ

xP
, where P(x) and 

Q(x) are polynomials. 

The algebraic technique known as partial fractions makes it possible to 

integrate any rational function. 

The technique of partial fractions depends on the result from advanced 

algebra: every rational function can be expressed as a sum of a polynomial 

and constant multiples of the three types of functions. 

Since any polynomial and each of the three types of rational fractions 

can be integrated, any rational function can be integrated. 

 To express P(x)/Q(x), where P(x) and Q(x) are polynomials, as the sum 

of partial fractions, follow these steps: 

Step 1. If the degree of P(x) is equal to or greater than the degree of 
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Q(x), devide Q(x) into P(x) to obtain a quotient and a remainder: 
 
 

 
 
 xQ

xR
xS

xQ

xP
  

where the degree of R(x) is less than the degree of Q(x). 

Step 2. If the degree of P(x) is less than the degree of Q(x), then 

express Q(x) as the product of polinomials of degree 1 and 2, where the 

second – degree factors are irreducible. 

Step 3. If px + q appears exactly n times in the factorization of Q(x), 

form the sum: 

6 
   n

n

qpx

k

qpx

k

qpx

k








...

2

21  

where the constant k1, k2 , … , kn are to be determined later. 

Step 4. If ax
2
 + bx + c appears exactly m times in the factorization of 

Q(x), then form the sum: 

   m
mm

cbxax

dxc

cbxax

dxc

cbxax

dxc















222

22

2

11 ...  

where the constants c1, c2,… , cm   and d1, d2,…,dm  are to be determined later. 

Step 5. Determine the appropriate coefficients, such that P(x)/Q(x) is 

equal to the sum of all the terms formed in steps 3 and 4 for all factors of 

Q(x) defined in step 2. That may be done by the following way, called 

equating coefficients. It depends on the fact that if two polinomials are equal 

for all x, than corresponding coefficients must be equal.        
 

Тable 29 

Basic definitions 

English Russian  Ukrainian 

Irreducible несократимый,  нескоротний,  

Recursive рекурентный рекурентний 

Quotient частное частка 

Remainder остаток остача 

Factorization разложение на 

множители 

розкладання на 

множники 

Appropriate соответствующий відповідний 

 

Task 

1. Compute the integral: 

a) 
 



dx

xx

xx
2

2

1

13
;           b) dx

xx

x






2

42
3

3

;       с) dx
xx

x
  62

3

.  

2*. a) Write x
4
 + x

2
+ 1 as the product of irreducible polinomials of 

second degree. 
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  b)  Compute    
 124 xx

dx
. 

 

5.1.5. Integration of trigonometric functions 

 How to integrate any rational function of sin and cos. 

 A polinomial in x and y is a sum of terms of the form ax
i
y

j
, where i and 

j are nonnegative integers and a is a real number. 

 The quotient of two such polinomials is called a rational function of x 

and y and is denoted R(x,y). If , in R(x,y), x and y are replaced by cos and 

sin, we obtain a rational function of cos and sin. 

 The technique of a particular substitution reduces the integration 

by any rational function of cos  and sin to the integration of a rational 

function of U. 
 

Task 

1. Find the integrals 

a)  xdx3cot ; 

b)   dx
2

cos2sin   ; 

c)   



sin3cos4

d
. 

 

5.1.6.  Integration of rational function of x and roots 

First of all let’s consider trigonometric substitutions that turn certain 

rational function of quantities that involve square roots into rational functions 

of sin and cos; these can be integrated by corresponding methods.  
 

5.1.7.  Trigonometric substitutions 

A rational function of x and 22 xa  , 22 xa  , or 22 ax  can be 

integrated by using a trigonometric substitution. If the integrand is a rational 

function of x and 

Case 1.     22 xa  ;   let x = asin     (a0, -/2    /2). 

Case 2.     22 xa  ;   let  x = atan    ( a>0,  -/2 <  < /2). 

Case 3.     22 ax  ;   let   x = asec   (  a>0,  0    ,   /2). 

The important thing that  the square root sign disappears. 
 

5.1.8.  The algebraic substitution 

Let n be a positive integer. Any rational function of x and n bax can be 

transformed into a rational function of U by the substitution  

U =  n bax   
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and thus can be integrated by partial fractions. 

Evaluate the integrals: 

     
dx

x

x

xx
dx

x

x
xdxxdx

x
xdxdx

x

x

3
,

2

1
,

1
,5sin,

cos3

1
,2sin,

1

3

44

4
25

6

2

 

 

5.2.  The Definite Integral 

We introduce the definite integral by an area problem. 
 

5.2.1.  An Area Problem 

Find the area of the region bounded by the curve y = f(x), the x axis, 

and the vertical lines x = a and x = b. And let f(x)  0, x[a,b]. 

First, the interval [a,b] is partitioned into n smaller Chapters, all of 

equal length or not. 

After the division into n Chapters is formed a number is selected in 

each Chapter at which to evaluate f(x). 

Then above each small interval draw the rectangle whose height is f(ci). 

The next step is to evaluate the function f(x) at each ci and form the sum 

with n summands – areas of all small rectangles. 

It can be shown that the sums used to approximate the area, mass, 

distance, or volume were all made the some way. 

Def. The sum   i

n

i

i xcf 
1

 is called the approximating sum for the function f(x) 

in interval [a,b]. 

It is called a Riemann sum. 

The larger n is and the shorter the Chapters are, the closer we would 

expect these approximating sums to be the quantity we are trying to find. 

Def. Mesh. The mesh of a partition is the length of the longest Chapter in the 

partition. 

Def. If f(x) is a function defined on [a,b] and the sum    i

n

i

i xcf 
1

 

approaches a certain number as the mesh of partitions of [a,b] shrinks toward 

0, no matter how the sampling number ci is chosen, that certain number is 

called the definite integral of f(x) over [a,b]. 

 Area, distance, mass, volume, are just particular interpretations of the 

definite integral. 

Theorem. Existence of the definite integral. Let f be a continuous function 

defined on [a,b]. Then the approximating sum    i

n

i

i xcf 
1

approaches a single 
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number as the mesh of the partition of [a,b] approaches 0. Hence  dxxf

b

a

  exists. 

 

Mean-Value Theorem for Definite Integrals. Let a and b be numbers, 

and let f be a continuous function defined for x between a and b. Then there 

is a number c between a and b such that     

    bacfdxxf

b

a

  

 

Тable 30 

Basic definitions 

English Russian  Ukrainian 

Definite integral определенный 

интеграл 

визначений інтеграл 

Area площадь площа 

To partition расчленять, разделять розчленовувати, 

розділяти 

To select выбирать вибирати 

Sample образец зразок 

Height высота висота 

Rectangle прямоугольник прямокутник 

Summand слагаемое доданок 

Approximating sum интегральная сумма інтегральна сума 

Mesh мера міра 
 

Task 

1. True or false: 

a) Every elementary function has an elementary derivative. 

b) Every elementary function has an elementary 

antiderivative. 
 

5.2.2. The fundamental theorems of calculus 

There is an intimate connection between the definite integral and the 

derivative. This relationship provides a tool for computing definite integrals. 

It is expressed in the fundamental theorems of calculus. 

 First Fundamental Theorem of Calculus. If f is continuous on [a,b] 

and if F is an antiderivative of f, then      aFbFdxxf

b

a

 . 

 Second Fundamental Theorem of Calculus. Let f be continuous on 

an open interval containing the interval [a,b]. Let    dttfxG

x

a

  for a  x  b. 
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Then G is differentiable on [a,b] and its derivative is f; that is, G'(x) = f(x).  

Corollary. Let f  be continuous on an interval [a,b]. Then  f  is the 

derivative of some function. 

 The First Fundamental Theorem is abbreviated by the letters FTC. It 

provides a tool for computing many definite integrals. If an antiderivative of f 

is elementary, then FTC is of use. But there are elementary functions, for 

instance, sinx
2
, 41 x , which are not derivatives of elementary functions. On 

these cases, it may be necessary to estimate the definite integral by an 

approximating sum. 

 Although there are formulas for computing definite integrals, do not 

forget that a definite integral is a limit of sums, because: 

1. In many applications in science the concept of the definite integral is 

more important than its use as a computational tool. 

2. Many definite integrals cannot be evaluated by a formula. Some of 

the more important of these have been tabulated to several decimal places 

and published in handbooks of mathematical tables. 

 

5.2.3. The substitution method in the definite integral 

Let f be a continuous function on a interval [a,b], U = h(x) be a 

differentiable function on the same interval, and g be a continuous function 

such that f(x)dx=g(u)du; that is   f(x) = g(h(x))h'(x). 

Then    
 

 

 

b

a

bh

ah

duugdxxf  

 

Тable 31 

Basic definitions 

English Russian  Ukrainian 

Fundamental основной основний 

Intimate близкий, тесный близький, тісний 

Connection, 

relationship 

связь зв'язок 

Tool средства, метод засоби, метод 
 

Task 

1. Use a substitution to evaluate the definite integral: 

 
 

dx
e

e
dx

x

x
ddx

x

x
x

xe





2

1

2

1

0

2

32

01

3

1
    

2

12
    sincos    

ln



  
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2. Evaluate the integrals by integration by parts: 

     


4

1

1

0

1

1

0

22 3ln    tan    xdxxxdxdxex x  

 

5.2.4. Applications of the Definite Integral 

It was shown that the area of a plane region bounded by the curve y = 

f(x), (f(x)0), the x axis, and the vertical lines x = a and x = b is equal to 

Area =  dxxf

b

a

  

Let f and g be two continuous functions such that f(x)  g(x) for all x in 

the interval [a,b]. Let R be the region between the curve y = f(x) and the 

curve  y = g(x) for x in [a,b].  

Inspection of figure shows that the area of R is given by 

Area =     dxxgxf

b

a

][   

 

5.2.5. Computing volume by parallel cross Chapters 

Let's consider a spatial region, a "solid", bounded by the given surface. 

Let A(x) be an area of the plane region inside the solid, that is, the cross 

Chapteral area.  

To find the volume of some solid, follow these steps: 

1. Choose an x axis. 

2. For each plane perpendicular to that axis, find the area of the cross 

Chapter of the solid made by the plane. Call this area A(x). 

3. Determine the limits of integration, a and b, for the region. 

4. Evaluate the definite integral   dxxA

b

a

 . 

Most of the effort is usually spent in finding the integrand A(x). 
 

5.2.6. Solid of revolution 

A lot of solids can be viewed as the solid obtained by revolving the 

plane region about some axis. This is a special case of a "solid of revolution". 

Let R be a region in the plane and L a line in the plane. Assume that L does 

not meet R at all or that L meets R only at points of boundary. The solid 

formed by revolving R about L is called a solid of revolution. Let us see how 

to compute the volume of a solid of revolution when R is region under the 

curve y = f(x) and above the interval [a,b] and L is the x axis. 

To find the volume, first find the area A(x) of a typical cross Chapter 

made by a plane perpendicular to the x axis corresponding to the coordinate 
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x. This cross Chapter is a disk of radius f(x). Thus A(x) = [f(x)]
2
. 

Since the volume of a solid is the integral of its cross-Chapteral area, 

we conclude that    dxxfV

b

a

2

  . 

Тable 32 

Basic definitions 

English Russian  Ukrainian 

application приложение додаток 

plane region плоская фигура плоска фігура 

cross Chapter поперечное 

сечение 

 поперечний 

переріз 

spatial пространственный просторовий 

solid тело тіло 

solid of revolution тело вращения тіло обертання 
 

Task 

1. Sketch the finite regions bounded by the given curves. Then find 

their areas. 

a)   y = x
2
,       y = 3x - 2. 

b)   y = 2x
2
,     y = x + 1. 

c)* x = y
2
,       x = 3y - 2. 

2. A region R in the plane is revolved around the x axis to produce a 

solid of revolution. In each case: 

a) draw the region, 

b) draw the solid of  revolution, 

c) draw the typical cross Chapter, 

d) set up a definite integral for the volume,  

e) evaluate the integral. 

3. R is bounded by y = x , the x axis, x = 1, x = 2. 

4.   R is bounded by y = x
2  

and y = x
3
. 

 

5.3. Improper Integrals 

5.3.1. Improper Integrals: Interval of Integration Unbounded 

Def. Convergent improper integral. Let f be continuous for  x  a. If 

 

b

a
в

dxxflim  exists, the function f(x) is said to have a convergent improper 

integral from a to . The value of the limit is denoted by    


a

dxxf . 

Def. Divergent improper integral. Let f be a continuous function. If  
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 

b

a
в

dxxflim  does not exist, the function f is said to have a divergent improper 

integral from a to . 

An improper integral  


a

dxxf can be divergent without infinite. 

The improper integral   


b

dxxf is defined similarly. 

If    

b

a
a

dxxflim exists, the improper integral is said to be convergent. If it 

does not  exist, then the improper integral is said to be divergent. To deal 

with  improper integrals over the entire x axis, define  




dxxf  to be the sum 

   





0

0

dxxfdxxf  which will be called convergent if both of them are 

convergent. 

Sometimes    


a

dxxf  can be shown to be convergent by comparing it to 

another improper integral  


a

dxxg . 

Theorem 1. Comparison  test for improper integrals. 

Let f(x) and g(x) be continuous functions for x  a. Assume that 0  f(x) 

 g(x) and that  


a

dxxg is convergent. Then  


a

dxxf  is convergent and   

   



aa

dxxgdxxf  

Theorem 2. Assume that f(x) is continuous for x  a, and assume that 

 


a

dxxf  is convergent. Then  


a

dxxf  is convergent. 

5.3.2. Improper Integrals: Integrand Unbounded 

Def. Convergent and divergent improper integrals. Let f  be continuous 

at every number in [a,b] except a. If  

b

t
at

dxxf
0

lim  exists, the function f is said 

to have a convergent improper integral from a to b. If limit does not exist, the 

function f is said to have a divergent improper integral from a to b. In a 

similar manner, if f is not defined at b, define  
b

a

dxxf  as  

t

a
bt

dxxf
0

lim , if this 

limit exists. 
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Chapter 6.  DIFFERENTIAL EQUATIONS 

 

6.1. Separable differential equations 

An equation that involves one or more of the derivatives of a function 

is called a differential equation. 

A solution of a differential equation is any function that satisfies the 

equation. To solve a differential equation means to find all its solutions. 

The order of a differential equation is the highest order of the 

derivatives that appear in it. 

We examine a special and important type of first-order differential 

equation, called separable. After showing how to solve it, we will apply it to 

the study of natural growth and decay and to inhibited growth. 

A separable differential equation is one that can be written in the form 
( )

( )

dy f x

dx g y
        (6.1) 

where ( )f x  and ( )g y  are differentiable functions. Such an equation can 

be solved by separating the variables, that is, bringing all the x's to one side 

and all the y's to the other side to obtain the following equation in 

differentials: 

g(y) dy = f(x) dx.                   

(6.2) 

 This is solved by integrating both sides: 

( ) ( )g y dy f x dx C                

(6.3) 

Some examples will illustrate the technique. 

EXAMPLE 1.   Solve 
2

( 0)
3

dy x
y

dx y
   . 

SOLUTION.   Separating the variables, we obtain 

3y dy = 2x dx. 

Thus 3 2ydy xdx C     

or     
2

23

2

y
x C  .        (6.4) 

Equation (6.4) determines y as a function of x implicitly. Each choice 

of C produces a solution.  
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EXAMPLE 2.   Solve the differential equation 

2
( , 0)

dy y
x y

dx x
             

(6.5) 

SOLUTION. At first glance the equation does not appear to be of the 

form in Eq. (6.1). However, it can be rewritten in the form 
(1 / )

(1 / 2 )

dy x

dx y
 , 

so it has the form of a separable differential equation. Separation of the 

variables is not hard: 

2dy y

dx x
 ,  

2dy y

dx x
 . 

Hence 
2

dy dx
C

y x
    or  

1
ln ln

2
y x C             

(6.6) 

(since x, y assumed > 0, ln ln , ln lnx x y y  ). 

In this case, let us solve for y explicitly: 
ln 2ln 2y x C   

2ln 2x Cy e        definition of natural logarithm 
2ln 2x Cy e e  basic law of exponents 

ln 2 2( )x Cy e e  power of a power 
2 2Cy x e . 

Since 2Ce  is an arbitrary positive constant, call it k. Thus the most 

general solution of Eq. (6.5) is 
2y kx              

(6.7) 

As a check on this solution, see if 2y kx  satisfies Eq. (6.5): 

  
22

2
kx

kx
x

 . 

Yes, it checks. 

The solution of a separable differential equation (in fact, any first-order 

differential equation) will generally involve one arbitrary constant. Each 

choice of that constant determines a specific function that satisfies the 

differential equation. 
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6.2. The Differential Equations of Natural Growth and Decay 

The next example treats a differential equation that is important in the 

study of growth and decay. It arises in such diverse areas as biology, ecology, 

physics, chemistry, and economic forecasting. 

EXAMPLE 3.   Solve the differential equation 

 0
dy

ky y
dx

  ,          

(6.8) 

where k is a nonzero constant. 

SOLUTION.   Separation of the variables yields 
dy

k dx
y
   

dy
k dx C

y
     

kx Cy e   
C kxy e e  . 

Denote the arbitrary positive constant Ce   by the letter A. Then 
kxy Ae              

(6.9)  

The most general solution of /dy dx ky  is kxy Ae . 
 

6.3. Linear differential equations with constant coefficients  

This Chapter treats a type of differential equation that many 

engineering and physics students may meet even before they take a D.E. 

course. It is intended to serve as a reference.  

The differential equation 
dy

a y
dx

 , or equivalently, 

0
dy

a y
dx

                (6.10) 

was solved ealier. Any solution has to be of the form a xy A e    for some 

constant A. This Chapter is concerned with generalizations of Eq. (6.10). 

First, we consider differential equations of the form 

( )
dy

a y f x
dx

   ,     (6.11) 

where a is a real constant and ( )f x  is some function of x.  [Equation 

(6.10) is the special case where ( ) 0f x  ]. Equation (6.11) is called a first-

order linear differential equation with constant coefficients. Second, we 

consider the second-order equation  
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2
( )

2
d y dy

b c y f x
dxdx

         (6.12) 

where b and c are real constants.  For some b and c, solving Eq. (6.12) 

may use complex numbers even though the solution will be a real function. 

An engineer or physicist will meet Eq. (6.12) in the form 
2

sin
2

qd q dq
L R V wt

dt Cdt
       

in the study of electric currents. Here q is a charge that varies with 

time, dqldt is current, sinV t  describes an applied voltage, R is resistance, L 

is inductance, and C is a constant describing the capacitor. They also meet 

Eq. (6.12) in the study of motion in the form 

0

2
sin

2
d x dx

m b k x F wt
dtdt

      . 

Here x describes the location of a particle moving on a line, 
0 sinF wt  is 

an applied force, 
dx

b
dt
  describes a damping effect, k x  describes the force of 

a spring, and m is the mass. 

Imagine for the moment that you have found a particular solution yp  

of Eq. (6.11) and a solution 1
y  of the associated homogeneous equation 

obtained from Eq. (6.11) by replacing ( )f x  by 0, (The homogeneous case) 

0
dy

a y
dx

        (6.13) 

A straightforward computation then shows that 1py y  is a solution of 

Eq. (6.11), as follows: 

    1
1 1 1

1
1 ( ) 0 ( ).

p

p p p

p

p

dyd dy
y y a y y a y a y

dx dx dx

dy dy
a y a y f x f x

dx dx

          

   
          

  

  

Now, the function axy C e   for any constant C, is a solution of Eq. 

(6.13). Thus, if py  is a solution of Eq. (6.11), then so is ax

py C e  . In fact, 

each solution of Eq. (6.11) must be of the form ax

py C e  . To see why, 

assume that py  and y both satisfy Eq. (6.11). Then 

    ( ) ( ) 0.
p

p p p

dyd dy
y y a y y a y a y f x f x

dx dx dx

  
               

   
 

 

Thus py y , being a solution of Eq. (6.13), must be of the form axCe  
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for some constant C. Thus ax

py y Ce  . These observations are summarized 

in the following theorem. 

Theorem 1. Let py  be a particular solution of the differential equation 

( )
dy

a y f x
dx

   . 

Then the most general solution is   ax

py y Ce   

EXAMPLE 1. Solve the differential equation   3 12
dy

y
dx

   . 

SOLUTION. One solution is the constant function 4y  . The most 

general solution is, therefore, 34 xy Ce   for any constant C.  

Once a particular solution py  has been found, Theorem 1 provides the 

general solution.  Example 2 illustrates one technique for finding py . 

EXAMPLE 2.   Find all solutions of the differential equation 

sin
dy

y x
dx

 .      (6.14) 

SOLUTION. Start by guessing what a solution might look like. First 

find one solution. Since ( ) sinf x x , let us see if there is a solution of the 

form cos sinpy A x B x  , for some constants A and B. Substitution in Eq. 

(6.14) yields 

( cos sin ) ( cos sin ) sin
d

A x B x A x B x x
dx

    . 

So we want 

sin cos cos sin sinA x B x A x B x x      
or simply,  

( )sin ( )cos sinA B x B A x x     . 

Choose A and B such that 1A B    and 0B A  . It follows that 

( ) 1A A    or 
1

2
A   . Consequently,  

1 1
cos sin

2 2
py x x    

is a solution of  Eq.(6.14), as may be checked by substitution in Eq. 

(6.14). 

The general solution of the homogeneous equation 0
dy

y
dx

   is 

xy Ce , so the general solution of Eq. (6.14) is    
1 1

cos sin
2 2

xy x x Ce    . 

Example 2 uses the method of undetermined coefficients: Guess a 

general form of the solution and see if the unknown constants can be chosen 
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properly to yield a solution of the differential equation.  

Before turning to solutions of Eq. (6.12), consider the special case 

when f(x) is identically 0, the so-called homogeneous case. 

Let us find all solutions of the homogeneous equation 
2

2
0

d y dy
b cy

d x dx
   .    (6.15) 

If 
1y  and 

2y  are both solutions of Eq. (6.15), a straightforward computation 

shows that 
1 1 2 2C y C y  is also a solution of Eq. (6.15) for any choice of constants 

1C  and 
2C .  [Since Eq. (6.15) involves the second derivative of y, we expect the 

general solution for y to contain two arbitrary constants.] 

EXAMPLE 3.   Solve  
2

2
3 2 0

d y dy
y

d x dx
   .      (6.16) 

SOLUTION. Recalling our experience with Eq. (6.10), we are tempted 

to look for a solution of the form kxe  for some constant k. Substitution of kxe  

into Eq. (6.16) yields 
2

2

( ) ( )
3 2( ) 0

kx kx
kxd e d e

e
d x dx

   , 

or  
2 3 2 0kx kx kxk e ke e   , 

which is equivalent to 
2 3 2 0k k   .       (6.17) 

By the quadratic formula, k = 1 or k = 2. Thus 1

xy e  and 2

2

xy e  are 

solutions of Eq. (6.16). Consequently, 
2

1 2

x xy C e C e         (6.18) 

is a solution of Eq. (6.16) for any choice of constants 
1C , and 

2C . (It 

can be proved that there are no other solutions.)  

The most general solution of the differential equation 
2

2
6 9 0

d y dy
y

d x dx
         (6.19) 

is of a different form.  If we try kxy e , we obtain 
2 6 9 0kx kx kxk e ke e    

2( 6 9) 0kxe k k    
2( 3) 0k    

3k    

This gives only the solutions of the form 3xy Ce . However, a second-

order equation should possess a solution containing two arbitrary constants.  
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Let us seek all solutions of the form    3( ) xy v x Ce , 

hoping to find some not of the form 3xy Ce . 

Straightforward computations give 

3 3 3 3( )( 3 ) ( ) 3 ( ) ( )x x x xdy
v x e v x e v x e v x e

dx

           and 

2
3 3 3

2
9 ( ) 6 ( ) ( )x x xd y
v x e v x e v x e

dx

      . 

Substituting into Eq. (3.19) yields 
3 3 3 3 3 39 ( ) 6 ( ) ( ) 18 ( ) 6 ( ) 9 ( ) 0x x x x x xv x e v x e v x e v x e v x e v x e              

which simplifies to  
3( ) 0xv x Ce  , 

hence to  

( ) 0v x  . 

Therefore, 
1 2( )v x C C x  , and our general solution is 

3 3

1 2

x xy C e C xe   , 

for arbitrary constants 
1C , and 

2C . 

The key to the nature of the solutions of Eq. (6.15) lies in the associated 

quadratic  

Equation                    2 0t bt c          (6.20) 

The type of solution to Eq. (6.15) depends on the nature of the roots of 

Eq. (6.20). There are three cases: two distinct real roots, a repeated root 

(necessarily real), and two distinct complex roots. Each case will be 

described by a corresponding theorem. 

Theorem 2. If 2 4b c  is positive, Eq. (6.20) has two distinct real roots, 

1r  and 
2r  .In this case, the general solution of Eq. (6.15) is 

1 2

1 2

r x r xy C e C e  .         (6.21) 

The proof that 1 2

1 2

r x r xy C e C e   is a solution is left to the reader. 

Theorem 2 covers the differential equation (6.16).  

EXAMPLE 4.   Solve   
2

2
6 9 0

d y dy
y

d x dx
   . 

SOLUTION. In this case, 2 4 21b c  , which is positive. The roots of 

the associated quadratic equation are 

1

5 21

2
r

 
  and 1

5 21

2
r

 
 . 

The general solution of the differential equation is 
5 21 5 21

2 2
1 2

x x

y C e C e
   

 

  . 
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The next theorem concerns the special case when the associated 

quadratic equation 2 0t b t c     has a repeated root, r. 

Theorem 3. If 2 4 0b c  , eq. (6.20) has a repeated root r.  In this case, 

the general solution of Eq. (6.15) is 

 1 2 1 2

r x r x r xy C e C x e C C x e          . 

That  1 2

r xy C C x e      is a solution is left to the reader to check by 

substitution.  Theorem 3 is illustrated by the solution of Eq. (6.19). 

Theorem 4. If 2 4b c  is negative, Eq. (6.20) has two distinct complex roots 

1r p i q    and 
1r p i q   . In this case, the general solution of Eq. 

(6.15) is 

 1 2cos sin pxy C qx C qx e   .        (6.22) 

EXAMPLE 5. Find the general solution of the differential equation of 

harmonic motion, 
2

2

2

d y
k y

d x
  ,      (6.23) 

where k is a constant. 

SOLUTION.  Rewrite Eq. (6.23) in the form 
2

2

2
0

d y
k y

d x
  , 

which has the associated quadratic equation 2 2 0t k  . The roots of this 

equation are 0 ki  and 0 ki . By Theorem 4, the general solution of Eq. (6.23) is 

1 2cos siny C kx C kx  . 

Equation (6.23) describes the motion of a mass bobbing at the end of a 

spring. The height of the mass at time x is y. Since the motion is oscillatory, it 

is plausible that it is described by a combination of coskx  and sinkx . If 
py  is 

any particular solution of 
2

2
( )

d y dy
b cy f x

d x dx
   ,      (6.24) 

and y* is a solution of the associated homogeneous equation (6.15), then 

py y   is a solution of Eq. (6.24), as may be checked by a straightforward 

calculation. Since we know how to find the general solution of Eq. (6.15), all 

that remains is to find a particular solution of Eq. (6.24). This can often be 

accomplished by a shrewd guess and the use of undetermined coefficients, as 

illustrated by the following example. 
 

EXAMPLE 6.   Solve the differential equation 
2

2

2
2 2 5

d y dy
y x

d x dx
    .    (6.25) 
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Since 22 5x   is a polynomial, let us seek a polynomial solution. If there 

is such a solution, it cannot have degree greater than 2, since the right-hand 

side of Eq. (6.25) has degree 2. So try 2y Ax Bx C   ; hence 2y Ax B    

and 2y A  .  Substitution in Eq. (6.25) gives 

   2 22 2 2 2 5A Ax B Ax Bx C x       , 

or    2 22 2 2 2 2 2 5Ax A B x A B C x       . 

Comparing coefficients gives 2A = 2, 2 A + 2B = 0, and 2A + B + 2C 

= 5. Thus A = 1, B = -1, and C = 2. 

Consequently, 2 2py x x    is a particular solution of Eq. (6.25). 

Next, turn to solving the associated homogeneous equation 
2

2
2 0

d y dy
y

d x dx
   .     (6.26) 

Here b = I and c = 2, so 2 4 7b c   . The roots of the associated 

quadratic equation 2 2 0t t    are 

1 7 1 7

2 2 2
i

  
  . 

By Theorem 4, the general solution of Eq. (6.26) is 

2 2
1 2

7 7
cos sin

2 2

x x

y C e x C e x
 

    

Putting everything together, we obtain the general solution of Eq. (6.25)  

2 2 2
1 2

7 7
2 cos sin

2 2

x x

y x x C e x C e x
 

     . 

Guessing a particular solution of Eq. (6.24) depends on the form of f(x). 

This table describes the most common cases: 

Form of ( )f x  Guess for py  

A polynomial Another polynomial 
kxe  (k not a root of associated quadratic 

equation) 

kxAe  

kxxe  (k not a root of the associated quadratic 

equation) 

( ) kxA Bx e  

sinkxe qx  or coskxe qx  (k qx  not a root of 

the associated quadratic equation) 

cos sinkx xAe qx Be qx

 

 A complete handbook of mathematical tables includes several pages of 

specific solutions for a much wider variety of functions f(x) that appear on 

the right side of Eq (6.24). 
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Chapter 7.  EQUATIONS OF MATHEMATICAL PHYSICS 

 

7.1.  Basic types of equations of mathematical physics 

The basic equations of mathematical physics (for the case of functions 

of two independent variables) are the following second-order partial 

differential equations:  

I. Wave equation  

     
2

2

2

2

2

x

u
a

t

u









.       (7.1) 

This equation is used in the study of processes of transversal vibrations 

of a string, the longitudinal vibrations of rods, electric oscillations in wires, 

the torsional oscillations of shafts, oscillations in gases and so forth. This 

equation is an equation of hyperbolic type. 

II. Fourier equation for heat conduction   

2

2

2

x

u
a

t

u









.       (7.2) 

This equation is used in the study of processes of the propagation of 

heat, the filtration of liquids and gases in a porous medium (for example, the 

filtration of oil and gas in subterranean sandstones), some problems in 

probability theory. This equation is the simplest of the class of equations of 

parabolic type.  

III. Laplace equation  

     0
2

2

2

2











y

u

x

u
.     (7.3) 

This equation is invoked in the study of problems dealing with 

electric and magnetic fields, stationary thermal state, problems in 

hydrodynamics, diffusion. This equation is the simplest in the class of 

equations of elliptic type. 

In equations (7.1), (7.2), and (7.3), the unknown function u  depends on 

two variables. Also considered are appropriate equations of functions with a 

larger number of variables. The wave equation in three independent variables 

is of the form 























2

2

2

2

2

2

2

y

u

x

u
a

t

u
. 

The heat-conduction equation in three independent variables is of the form  























2

2

2

2

2

y

u

x

u
a

t

u
. 
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Laplace equation in three independent variables has the form 

0
2

2

2

2

2

2
















z

u

y

u

x

u
. 

 

7.2. Deriving the equation of the vibrating string. Formulating the 

boundary-value problem  

In mathematical physics a string is understood to be a flexible and 

elastic thread. The tensions that arise in a string at any instant of time are 

directed along a tangent to its profile. Let a string of length l  be, at the 

initial instant, directed along a segment of the x -axis from 0  to l . 

Assume that the ends of the string are fixed at the points 0x  and lx  . 

If the string is deflected from its original position and then let loose; or if 

without deflecting the string we impart to its points a certain velocity at 

the initial time, or if we deflect the string and impart a velocity to its 

points, then the points of the string will perform certain motions; we say 

that the string is set into vibration. The problem is to determine the shape 

of the string at any instant of time and to determine the law of motion of 

every point of the string as a function of time. 

Let us consider small deflections of the points of the string from the 

initial position. We may suppose that the motion of the points of the string is 

perpendicular to the x -axis and in a single plane. 

The process of vibration of the string is inscribed by a single 

function ),( txu . A point of the string with abscissa x  has moved at time t . 

Since we consider small deflections of the string in the ux,  plane, we 

shall assume that the length of an element of string is equal to its 

projection on the x  -axis. We also assume that the tension of the string at 

all points is the same; we denote it by T . 

Consider an element of the string. Let us find the external forces 

applied to the element MN  (Fig.1).  
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M 
 

 

N 


 

Fig. 1. The action of forces on the element of the string 

O x 

u 

T 

xx 
 

 

       tantansinsin TTTT  

       
x

x

txu
Tx

x

txxu
T

x

txu

x

txxu
T 



























 

2

2

2

2 ,,,, 
 

(hear, we applied the Lagrange theorem for the expression in the square 

brackets). 

In order to obtain the equation of motion, we must equate to the force 

of inertia the external forces applied to the element. Let   be the linear 

density of the string. 

Then the mass of an x element of string, will be x . The acceleration 

of the element is 
2

2

t

u




. By d'Alembert's principle we will have  

x
x

u
T

t

u
x 









 

2

2

2

2

 . 

Canceling out x  and denoting 2a
T





, we get the equation of motion  

2

2

t

u




=

2

2

2

x

u
a




.      (7.4) 

This is the wave equation, the equation of the vibrating string. Equation 

(7.4) by itself is not sufficient for a complete definition of the motion of a string. 

The desired function ),( txu  must also satisfy boundary conditions that indicate 

what occurs at the ends of the string and initial conditions, which describe the 

state of the string at the initial time 0t  . The boundary and initial conditions are 

referred to collectively as boundary-value conditions. 

Let the ends of the string at 0x  and lx   be fixed. Then for any t  the 

following equations must hold: 
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  0,0 tu ,          (7.5) 

 

  0, tlu .          (7.6) 

These equations are the boundary conditions for the problem.  

  )(0, xfxu  ,         (7.7) 

 

)(
0

xF
tt

u





.         (7.8) 

Conditions (7.7) and (7.8) are the initial conditions. 
 

7.3. Sollving of the equation of the vibrating String by the method 

of separation of variables (the Fourier method) 

The method of separation of variables (or the Fourier method) is typical 

for solving of many problems in mathematical physics. Let it be required to 

find the solution of the equation (7.4) which satisfies the boundary-value 

conditions (7.5)-(7.6). 

We shall seek a particular solution of equation (7.4) that satisfies the 

boundary conditions (7.5) and (7.6) , in the form of a product of two 

functions )(xX  and )(tT , of which the former is dependent only on x , and 

the letter, only on t : 

)()(),( tTxXtxu  .        (7.9) 

Substituting into equation (7.1), we get  

)()()()( 2 tTxXatTxX  , 

and dividing the terms of the equation by TXa 2 we obtain  

X

X

Ta

T 



2

.         (7.10) 

The left member of this equation is a function that does not depend on x , 

the right member is a function that does not depend on t . Equation (7.10) is 

possible only when the left and right members are not dependent either on x  or 

on t , that is, are equal to a constant number. We denote it by  , where 0 .It 

must be negative number to satisfy the boundary conditions (7.5) and (7.6). Thus,  







X

X

Ta

T
2

. 

From these equations we get two equations: 
0 XX  ,      

02  TaT  .      

The general solutions of these equations are  

xBxAxX   sincos)( ,         (7.11) 



77 

tDtCtT   sincos)(      (7.12) 

where CBA ,,  and D  are arbitrary constants. Substituting the 

expressions )(xX  and )(tT  into (7.9), we get  

  taDtaCxBxAtxu   sincossincos),( . 

Now choose the constants A  and B  so that the conditions (7.5) and 

(7.6) are satisfied. Since 0)( tT , the function )(xX  must satisfy the 

conditions (7.5) and (7.6) that is, we must have  

0)0( X , 0)( lX . 

Putting the values 0x  and lx   into (7.11), we obtain on the basis of 

(7.5) and (7.6)  

lBlA

BA





 sincos0

010
 

From the first equation we find 0A . From the second it follows that  

0sin  lB  . 

0B , since otherwise we would have 0X  and 0u , which 

contradicts the hypothesis. Consequently, we must have  

0sin  l . 

Whence  

l

n
   ,...)2,1( n        (7.13) 

(we do not take the value 0n , since then we would have 0X  and 

0u ). And so we have  

x
l

n
BX


sin .       (7.14) 

These values of   are called eigenvalues of the given boundary-value 

problem. The functions )(xX  corresponding to them are called eigenfunctions.  

It follows from (7.12) 

,....)2,1(sincos)(  nt
l

an
Dt

l

an
CtT


.    (7.15) 

For each value of n , hence for every  , we put the expressions (7.14) 

and (7.15) into (7.9) and obtain a solution of equation (7.4) that satisfies the 

boundary conditions (7.5) and (7.6). We denote this solution by ),( txu
n

: 









 t

l

an
Dt

l

an
Cx

l

n
txu

nnn


sincossin),( .   

For each value of n  we can take the constants C  and D  and thus write 

n
C  and 

n
D  (the constant B  is included in 

n
C  and 

n
D ). Since equation (7.4) is 

linear and homogeneous , the sum of the solutions is also a solution, and 
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therefore the function represented by the series 







1

),(),(
n

n
txutxu    or  

 x
l

n
t

l

an
Dt

l

an
Ctxu

n
nn


sinsincos),(

1














    (7.16) 

will likewise be a solution of the differential equation (7.4), which will 

satisfy the boundary conditions (7.5) and (7.6). Series (7.16) will obviously 

be a solution of equation (7.4) only if the coefficients 
n

C  and 
n

D  are such that 

the series converges and that the series resulting from a double term-by-term 

differentiation with respect to x  and to t  converges as well.  

This solution (7.16) should also satisfy the initial conditions (7.7) and 

(7.8). We may do this by choosing the constants 
n

C  and 
n

D . Substituting 

0t  into last equation, we get [see condition (7.7)]: 

x
l

n
Cxf

n
n


sin)(

1






 .    

If the function )(xf  is such that in the interval ),0( l  it may be 

expanded in a Fourier series, the last equality will be fulfilled if we put 


l

n
xdx

l

n
xf

l
C

0

sin)(
2 

.           (7.17) 

We then differentiate the terms of the function ),( txu  with respect to t  

and substitute 0t . From condition (7.8) we get the equation 

x
l

n

l

an
DxF

n
n


sin)(

1






 . 

We define the Fourier coefficients of this series 


l

n
xdx

l

n
x

an
D

0

sin)(
2 




.       (7.18) 

Thus, we have proved that the series (7.16), where the coefficients 
n

C  

and 
n

D are defined by formulas (7.17) and (7.18) [if it admits double 

termwise differentiation], is a function ),( txu , which is the solution of 

equation (7.4) and satisfies the boundary and initial conditions (7.5)-(7.8). 

Example. Determine the motion of the string under the boundary-value 

conditions (7.5)-(7.8). The initial deviation of the string is equal to zero but 

the initial rate of the motion is caused by hammer impact at the middle of the 

string. The functions )(xf  and )(xF  are determined by equalities  

0)( xf ,   
 

















.
2

2

,
2

0
2

)(

lx
l

for
l

xlh

l
xfor

l

xh

xF  



79 

l  x  

2

l
 

0  

)(xFu   

h  

Fig. 2. The initial rate of the string  

The graph of the function )(xF  is shown on the figure 2. The ends of 

the string at 0x  and lx   are fixed. Let us determined the Fourier 

coefficients. It follows from condition (7.7) 0
n

C . Let us find the Fourier 

coefficients 
n

D  of the series 

 
l

n
xdx

l

n
xF

an
D

0

sin)(
2 


 

 
















  
2

0

2

sin
2

sin
22

l

l

l

xdx
l

n
xl

l

h
xdx

l

n
x

l

h

an




. 

Analysis of graphs of functions )(xF  and x
l

n
sin  that shown on the 

fig. 3 let simplify evaluation of coefficients 
n

D . Taking into account the 

symmetry of graphs we get the conclusion  

  0sin
2

sin
22

0

2

 

l

l

l

xdx
l

n
xl

l

h
xdx

l

n
x

l

h  , 

if n  is an even number, and  

    
2

0

2

0

2

sin
2

2sin
2

sin
2

ll

l

l

xdx
l

n
x

l

h
xdx

l

n
xl

l

h
xdx

l

n
x

l

h 
, 

if n  is an odd number. Fourier coefficients 
n

D  with even numbers 

disappear ( 0
n

D , if n  is an even number), but Fourier coefficients 
n

D  are 

calculated by the formula  

 
2

0

sin
24

l

n
xdx

l

n
x

l

h

an
D




, 

if n  is an odd number. Using the formula for integration by parts  
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 
b

a

b

a

b

a

duvvudvu , 

we get 

n
D =





















x
l

n

n

l
vdxx

l

n
dv

dx
l

h
dux

l

h
u






cossin

22

= 





















 
2 2

cos

0

2/

cos
24

l

o

dx
l

h
x

l

n

n

l
l

x
l

n

n

l
x

l

h

an








 








 





2
sin

2

2
cos

4
22

ln

n

lhn

n

lh

an








=

2
sin

8
33

ln

na

lh 



 


. 

Here n  is an odd number. Let us make substitution  12  mn  

,...)3,2,1( m . 
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0  

l  x  
2

l
 

x
l

y
3

sin  

1  

1  

Fig.3. Graphs of the functions xxxxF
2

3
sin,

2

2
sin,

2
sin),(

  

h

 

0  

1  

l  x  

2

l  0  

xy
2

sin


  

h  

x
l

y
2

sin

 

1  

l  x  

2

l  

x  

2

l  

0  

)(xFu   

Then we obtain the answer for 
m

D : 

 
  1

33
1

12

8 







m

m
ma

lh
D


. 

Taking into account equality (7.16) we get that the motion of the string 

is described by formula  

 
 

   
l

xm

l

tma

ma

lh
txu

m

m










 










12
sin

12
sin

12

18
),(

1
3

1

3
.       (7.19) 
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7.4. Solving of the equation of the vibrating endless. String by the 

running waves method (the D’alembert’s method) 

Now we will consider the motion of endless drown string. Let us 

imagine the ends of the string very far from the segment of it. We deflect this 

segment from its original position and impart a velocity to its points, then let 

loose. The string is set into vibration. We‘ll find a solution of the equation 

(7.1) satisfying the initial conditions (7.4) and (7.5) only. Such a problem is 

called the Cauchy’s problem. We’ll consider the D’alembert’s method of 

solving the problem. It is called the running waves method. Let’s prove the 

general solution of equation (7.1) has the form 

)()(),( taxtaxtxu   .          (7.20) 

Here   and   are arbitrary functions double differentiable with respect 

to x  and t . Indeed 

)()( atxatxu
x

  , 

)()( atxatxu
xx

  , 

)()( atxaatxau
t

  , 

)()( 22 atxaatxau
tt

  . 

Substituting the second derivatives in equation (7.1) we get the identity. 

The next problem is to define the unknown functions satisfying the initial 

conditions (7.4) and (7.5). Let assume 0t . It follows from (7.4) 

)()()( xfxx  .                      (7.21) 
 

Taking 0t  in the expression for 
t

u  we obtain from initial condition (7.5) 

)()()( xFxaxa   .      (7.22) 
 

Integrating both sides from 0  to x , we get 

CdxxF
a

xx
x

 
0

)(
1

)()(  ,     (7.23) 

 

C  is a constant. It follows from the system of equations (7.21) and (7.23) 

 
x C

dxxF
a

xfx
0 2

)(
2

1
)(

2

1
)( , 

 
x C

dxxF
a

xfx
0 2

)(
2

1
)(

2

1
)( . 

Taking into account equality (7.22) and changing argument x  on atx   

and atx   we find the function ),( txu  













atx

atx

dxxF
a

atxfatxf
txu )(

2

1

2

)()(
),( .       (7.24) 

This formula is called the D’alembert’s solution of the Cauchy’s 

problem for wave equation .  
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Example.  

Solve the Cauchy’s problem for equation (7.1) under the next initial 

conditions 

 
2

0, xexu  , 

0
0






tt

u
. 

 

Taking into account equalities 
2

)( xexf  , 0)( xF , we get the answer  
   

2
),(

22
atxatx ee

txu
 

 . 

 

The deflection of the endless string in time according to the answer is 

shown on the figure 4. It is the sum of two running waves. Both waves are 

the graphs of the function 
2

2

1
)( xexf  . The first wave moves on the left, the 

second wave moves on the right. The rate of movement is equal to a .  

 

7.5. The equation of heat conduction in a rod. Formulation of the 

boundary-value problem 

Let us consider a homogeneous rod of length l . Let us assume that the 

lateral surface of the rod is impenetrable to heat transfer and the temperature 

is the same at all points of any cross-Chapteral area of the rod. Let us study 

the process of propagation of heat in the rod.  Let ),( txu  be the temperature in 

the cross Chapter of the rod with abscissa x at time t . Experiment tells us that 

0t

 

1t  

2t  

x  

u  

u  

u  

t  

Fig.4. Running waves 
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the rate of propagation of heat (that is, the quantity of heat passing through a 

cross Chapter with abscissa x  in unit time) is given by the formula 

S
x

u
kq 




        (7.25) 

where S  is the cross-Chapteral area of the rod and k  is the coefficient 

of thermal conductivity tS
x

u
k

xx







 2

. Тhе quantity of heat passing through 

the cross Chapter with abscissa 
1

x  during time t  will be equal to 

tS
x

u
kQ

xx







 1

1
     

and the same for the cross Chapter with abscissa 
2

x : 

tS
x

u
kQ

xx







 2

2
.     

The influx of heat 
21

QQ   into the rod element during time t  will be  









tS
x

u
kQQ

xx 1

21
       

 xtS
x

u
ktS

x

u
k

xxxx




























12

2

2

      (7.26) 

This influx of heat during time t  was spent in raising the temperature 

of the rod element by u   

21
QQ  t

t

u
SxcuSxc 




      (7.27) 

where c  is the heat capacity of the substance of the rod and   is the 

density of the substance. Equating (7.25) and (7.26), we get 

t
t

u
SxctxS

x

u
k 









 

2

2

. 

Denoting 2a
c

k


 
, we finally get 

2

2

2

x

u
a

t

u









.      (7.28) 

This is the equation for the propagation of heat (the equation of heat 

conduction) in a homogeneous rod.  

For the solution of equation (7.28) to be definite, the function ),( txu  

must satisfy the boundary-value conditions corresponding to the physical 

conditions of the problem. For the solution of equation (7.28), the boundary-

value conditions may differ. The conditions which correspond to the first 

boundary-value problem for Tt 0  are as follows: 
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)()0,(
1

xxu        (7.29) 

)(),0(
1

ttu        (7.30) 

)(),(
2

ttlu        (7.31) 
 

Condition (7.29) (the initial condition) correspondі to the fact that for 

0t  the temperature is given in various cross Chapters of the rod and is 

equal to )(
1

x . Conditions (7.30) and (7.31) (the boundary conditions) 

correspond to the fact that at the ends of the rod, 0x  and lx  , the 

temperature is maintained equal to )(
1

t  and )(
2

t , respectively.  

It is proved that the equation (7.28) has only one solution in the region 

lx 0 , Tt 0 , which satisfies the conditions (7.29), (7.30) and (7.31). 
 

 

7.6. Solving the first boundary-value problem for the heat-

conduction equation by the method of finite differences 

Let us replace derivatives by appropriate differences 

h

txuthxu

x

txu ),(),(),( 





    








 









h

thxutxu

h

txuthxu

hx

txu ),(),(),(),(1),(
2

2

 

or 

22

2 ),(),(2),(),(

h

thxutxuthxu

x

txu 





    (7.32) 

similarly, 

l

txultxu

t

txu ),(),(),( 





.     (7.33) 

The first boundary-value problem for the heat conduction equation is 

stated as follows. It is required to find the solution of the equation (7.28) that 

satisfies the boundary-value conditions (7.29), (7.30), (7.31), that is, we have 

to find the solution ),( txu  in a rectangle bounded by the straight lines 

TtLxxt  ,,0,0 , if the values of the desired function are given 

on three of its sides: Lxxt  ,0,0 . We cover region with a grid 

formed by the straight lines (Fig. 5) 

,...2,1,0,  ihix , 

,...2,1,0,  klkt  

and approximate the values at the lattice points of the grid, (the points 

of interChapter of these lines. Introducing the notation 
ki

uklihu
,

),(  . We 

write a corresponding difference equation for the point ),( klih . In accord with 
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(7.32) and (7.33) we get  

2

,1,,12,1,
2

h

uuu
a

l

uu
kikikikiki 





. 

We determine  

1, ki
u  

kikiki
uu

h

l
au

h

la
,1,12

2

,2

22
1











 .    (7.34) 

From (7.34) it follows that if we know three values in the row number 

k , we can determine the value 
1, ki

u  in the )1( k -th row. We know from 

(7.29) all the values on the straight line 0t . By formula (7.34) determine 

the values at all the interior points of the segment lt  . We know the values 

at the end points of this segment by virtue of (7.30) and (7.31). In this way, 

row by row, we determine the values of the desired solution at all lattice 

points of the grid. It may be proved that from (7.34) we can obtain an 

approximate value of the solution not for an arbitrary relationship between 

the steps h  and l , but only for 
2

2

2a

h
l  . Formula (7.34) is greatly simplified if 

the step length l  is   
2

2

2a

h
l  . 

In this case, formula (7.34) takes the form 

 
kikiki

uuu
,1,11,

2

1


 . 

 

 

t  
T  

x  

Fig.5. Grid formed by the straight 

lines 

 1, ki  

 ki,  

 ki ,1

 

),1( ki   
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Тable 33 

Basic definitions 

English Russian  Ukrainian 

wave equation волновое уравнение хвильове рівняння 

transversal vibrations of a 

string 

поперечные колебания 

струны 

поперечні коливання 

струни 

flexible and elastic thread гибкая упругая нить гнучка пружна нитка 

tension напряжение напруження 

deflect отклонение відхилення 

impaсt удар удар 

to cancel out вычеркивать викреслювати 

longitudinal vibrations of 

rods 

продольные колебания 

стержней 

повздовжні коливання 

стержнів 

torsional oscillations of 

shafts 

крутильные колебания 

валов 

крутильні коливання 

валів 

filtration of liquids and 

gases 

фильтрация жидкости и 

газа 

фільтрація рідини та 

газу 

equations of parabolic 

type 

уравнение 

параболического типа 

рівняння параболічного 

типу 

propagation of heat распространение тепла поширення тепла 

porous medium пористая среда пористе середовище 

subterranean sandstones подземні пісчаники подземні пісчаники 

equations of parabolic 

type 

уравнение 

гиперболического типа 

рівняння гіперболічного 

типу 

Laplace equation уравнение Лапласа рівняння Лапласа 

probability theory теория вероятностей теорія ймовірностей 

heat-conduction equation уравнение 

теплопроводности 

рівняння 

теплопровідності 

boundary-value problem краевая задача крайова задача 

equation of the vibrating 

string 

уравнение колебаний 

струны 

рівняння коливань 

струни 

boundary conditions предельные условия граничні умови 

initial conditions начальные условия початкові умови 

boundary-value 

conditions 

краевые условия граничні умови 

 

method of separation of 

variables 

метод разделения 

переменных 

метод поділу змінних 

eigenvalues собственные числа власні числа 

eigenfunctions собственные функции власні функції 

double term-by-term 

differentiation with 

respect to x  and to t  

двойное почленное 

дифференцирование по 

перменным x  и t  

подвійне почленне 

диференціювання за 

змінними x  та t  
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Chapter 8. ELEMENTS OF THE THEORY OF PROBABILITY 

 AND MATHEMATICAL STATISTICS 

It is not sufficient merely to indicate the fact of randomness in order 

to make use of a particular phenomenon of nature or to control a 

technological process. We have to learn to evaluate random events 

numerically and predict the course they will take. Such, at the present 

time, are the insistent demands of theoretical and practical problems. Two 

divisions of mathematics are engaged in the solution of such problems and 

in constructing the requisite general mathematical theory: they are the 

theory of probability and mathematical statistics. 
 

8.1. Random event. Relative frequency of a random event. The 

probability of an event. The subject of probability theory 

The basic concept of probability theory is that of a random 

(chance) event. A random event is an event which may occur or fail to 

occur under the realization of a certain set of conditions.  

Example. In coin tossing, the occurrence of heads is a random event. 

Example. In firing at a target from a particular gun, hitting the 

target or a given area on it is a random event. 

Definition. The relative frequency p* of a random event A is the 

ratio of the number m* of occurrences of the given event to the total 

number n* of identical trials, in each of which the given event could 

occur or fail to occur. We will write 

.)(



 

n

m
pAP  

Example. Suppose, under identical conditions, we fire 6 sequences of 

shots at a given target; 

In the first sequence there were 5 shots and 2 hits, 

In the second sequence there were 10 shots and 6 hits, 

12 shots and 2 hits 

50 shots and 27 hits 

100 shots and 49 hits 

200 shots and 102 hits 

Event A is a hit. The relative frequency of hit in the sequences will be 

0.40, 0.60, 0.58, 0.54, 0.49, 0.51. 

From observations of a variety of phenomena, we can conclude that 

if the number of trials in each sequence is small, then the relative 

frequencies of the occurrence of event A in the different sequences can 

differ substantially from one another. However, if the number of trials in 
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the sequences is great, then, as a rule, the relative frequencies of the 

occurrence of event A in different sequences will differ but slightly, and the 

difference is the smaller, the greater the number of trials in the sequences. 

We say that the relative frequency in a large number of trials ceases more and 

more to be accidental (of a random nature). Experiments show that in 

most cases there is a constant p such that the relative frequencies of 

occurrence of an event A, given a large number of trials, differ but slightly 

from p, except in rare cases. 

This experimental fact is symbolized as follows: 

p
n

m
n
 



 

The number p is called the probability of occurrence of a random 

event A. This statement is symbolized as 

pAP )(  

The probability p is an objective characteristic of the possibility of occurrence 

of event A under given trials. It is determined by the nature of A. 

Given a large number of trials, the relative frequency differs very 

slightly from the probability, except in rare cases, which may be ignored. 

Since probability is an objective characteristic of the possibility of 

occurrence of a certain event, to predict the course of numerous processes 

that one has to consider in military affairs, in the organization of 

production, in economic situations, etc., it is necessary to be able to 

determine the probability of occurrence of certain compound events. 

Determining the probability of occurrence of an event on the basis of 

the probabilities of the elementary events governing the given 

compound event, and the study of probabilistic regularities of various 

random events constitute the subject of the theory of probability. 
 

 

8.2. The classical definition of probability and the calculation of 

probabilities 

In many cases it is possible to calculate the probability of a 

random event by proceeding from an analysis of the trial.  

Example. A homogeneous cube with faces labeled 1 to 6 is called 

a die. We will consider the random event of the occurrence of a number l 

 61  l  on the upper face for each throw of the die. By virtue of the 

symmetry of the die, the events (the appearance of any number from 1 to 

6) are equally probable. Hence they are called equally probable events. 

Given a large number of throws, n it can be expected that the number l 
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(and any other number from 1 to 6) will turn up in roughly n/6 cases. 

Experiments corroborate this fact. 

The relative frequency will be close to the number 6/np  . It is 

therefore considered that the probability of the number l  61  l  turning 

up is equal to 1/6. 

Definition. Random events in a given trial are called disjoint 

(mutually exclusive) if no two can occur at the same time. 

Definition. We will say that random events form a complete group 

if in each trial any one of them can occur but no disjoint event can occur. 

We consider a complete group of equally probable disjoint random 

events. We give the name cases to such events. An event (case) of such a 

group is termed favorable to the occurrence of event A if the occurrence 

of   the case implies the occurrence of A. 

Example. We have 8 balls in an urn. Each ball is numbered from 1 to 8. 

Balls labeled 1, 2, 3 are red, the others are black. The occurrence of a ball labeled 

1 (or 2 or 3) is an event favorable to the occurrence of a red ball. 

For this case, we can give a definition of probability that differs 

from that given above. 

Definition. The probability p of event A is the ratio of the number 

т of favorable cases to the number n of all possible cases forming a 

complete group of equally probable disjoint events, or, symbolically, 

n

m
pAP )(  

Definition. If relative to some event there are n favorable cases 

forming a complete group of equally probable disjoint events, then such an 

event is called a certain event. A certain event has probability p=1. 

 If not a single one of n cases forming a complete group of equally 

probable disjoint events is favorable to an event, then it is termed an 

impossible event and has probability p= 0. From the definition of 

probability it follows that the relation 
10  p  

holds true. 

Example. Ten items out of a set of 100 are defective. What is the 

probability that 3 out of any 4 chosen items will not be defective? 

Solution. Four items out of 100 can be chosen in the following 

number of ways: 4
100Cn  . The number of cases where 3 out of 4 items are 

nondefective is equal to 1
10

3
90 CCm  . The desired probability is 

3.0
4
100

1
10

3
90 



C

CC

n

m
p . 
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8.3. The addition of probabilities. Complementary random events 

Definition. The logical sum   (union) of two events A1 and 2A  is an 

event С consisting in the occurrence of at least one of the events. 

Let us consider the probability of the union of two disjoint events 

1A  and A2. The union of these events is denoted by 

21 AA   

The following theorem, which is called the theorem on the addition 

of probabilities, holds true. 

Theorem1. Suppose, in a given trial (phenomenon, experiment), 

a random event A} can occur with probability P(A1) and an event A2 

with probability Р(A2). The events Al and A2 are exclusive. Then the 

probability of the union of the events, that is, the probability that 

either event A1 or event A2 will take place, is computed from the 

formula 

               )()( 2121 APAPorAAP           (8.1) 

The proof of this theorem is the same for any number of terms:  
  )(...)()...( 2121 nn APAPAPorAororAAP   

Definition. Two events are called complementary events if they are 

exclusive and form a complete group. 

If one event is denoted by A , the complement (complementary 

event) is denoted by A . Let the probability of the occurrence of event A 

be p, the probability of the nonoccurrence of event A, that is, the 

probability of the occurrence of event A , be qAP )( . On trial, either A  or 

A  will occur, therefore Theorem 1 gives 

                                            1 APAP .                        (8.2) 

That is, the union of the probabilities of complementary events is 

equal to unity: 
1 qp  

Corollary. If random events nAAA ,...,, 21  form a complete group of 

exclusive events, then the following equation holds true: 

              1)(...)()( 21  nAPAPAP                                  (8.3) 

Definition. Random events A  and В are called compatible if in a 

given trial both events can occur, which is to say we have a logical 

product (interChapter) of events A and B. 

The event which consists in the interChapter of A and В is denoted 

by (A and B) or (AB). The probability of the interChapter of events A 

and В will be denoted by Р(A and B). 
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Theorem. The probability of the union of compatible events is 

computed from the formula 

   BandAPBPAPBorAP  )()(           (8.4) 

The truth of formula (1.4) can be illustrated geometrically. We 

first give the definition. 

Definition. Given a certain domain D with area S. Consider a 

subdomain d of D. Let S1 be the area of d. Then the probability of a 

point falling in d (the falling of a point in D is taken to be a certain 

event) is, by definition, S1/S, or p=S1/S. This is called geometric 

probability. 
areaBorAP )(  abcda 

abfdaareaAP )(   

bcdebareaBP )(  

areaBandAP )( debfd  

 
 

 

8.4. Multiplication of probabilities of independent events 

Definition. An event A is said to be independent of В if the probability of 

occurrence of A does not depend on whether event B took place or not. 

Theorem. If random events A and В are independent, then the 

probability of the interChapter of events A and В is equal to the product 

of the probabilities of occurrence of A and B: 

             )()( BPAPBandAP                       (8.5) 
 

8.5. Dependent events. Conditional probability. Total probability 

Definition.  Event A is said to be dependent  on event B if the 

probability of occurrence of A depends on whether B took place or not.  

The probability that event A occurred, provided that B took place, will 

be denoted by )(APB  and will be called the conditional probability of event A 

provided that B has occurred.  

Theorem. The probability of the interChapter of two events is equal 

to the product (logical interChapter) of the probability of one by the 

conditional probability of the other computed on the condition that the first 

event has taken place, that is 

      )()( APBPBandAP B                         (8.6) 

Total  probability 

Theorem. If event A can be realized only when one of the 

events Bl, B.2, . . . ,  Bn, which form a complete group of exclusive events, 

occurs, the probability of event A is computed from the formula 
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)()(...)()()()()(
21 21 APBPAPBPAPBPAP

nBnBB         (8.7) 

Formula (8.7)  is called the formula of total  probability. 

 Proof.   Event   A  can  occur  if  one  of  the  compatible  events  

(B1 and A),      (B2 and A),  . . . ,      (Bn and A) 

is realized. Consequently, by the theorem of addition of probabi lities, 

we get P(A)=P(Bl and A)+P(B2 and A)+..  . . .+ P(Bn and A) 

Replacing the terms of the right side in accordance with formula (8.1),  we 

get equation (8.7). 
 

8.6. Probability of causes. Bayes's formula 

Statement of the problem. We will consider a complete group of 

exclusive events nBBB ,...,, 21 , the probabilities of occurrence of which are 

)(),...,(),( 21 nBPBPBP . Event A can occur only together with some one of the 

events nBBB ,...,, 21 , which we will call causes. 

The probability of the occurrence of event A is, in accord with formula (8.8)  

                      )()(...)()()()()(
21 21 APBPAPBPAPBPAP

nBnBB  .     (8.8) 

Suppose that event A has taken place. This fact will alter the probability 

of the causes, )(),...,(),( 21 nBPBPBP . It is required to determine the conditional 

probabilities of the realization of these causes on the assumption that event A 

has occurred, that is, to determine )(),...,(),( 21 nAAA BPBPBP . 

(alter  lteo :  - изменять) 

Solution of the problem. We will find the probability P (A and B1): 
  )()()()( 111 1

BPAPAPBPBandAP AB   

hence 

)(

)()(
)( 11

1
AP

APBP
BP

B

A


 . 

Substituting for P (A) its expression  (8.8),  we get 









n

i

Bi

B

A

APBP

APBP
BP

i

1

1

1

)()(

)()(
)( 1 .                               (8.9) 

The probabilities )(),...,(),( 32 nAAA BPBPBP  are determined in similar fashion: 









n

i

Bi

Bk

kA

APBP

APBP
BP

i

k

1

)()(

)()(
)( . 

)( kA BP  - the probability of the realization of cause Bk provided that 

event A has occurred.  

Formula (8.9) is called Bayes's formula or the theorem of causes. 

(Bayes' s rule for the probability of causes.) 
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8.7. The Bernoulli’s scheme of the repeated trials  

Suppose we have a sequence of n trials, in each of which event A  can 

occur with probability p.  

Theorem. The probability )(mPn  that in n trials event A will occur 

m times and the event A  (nonoccurrence of A) will occur n-m times is 

equal to mnmm
n qpC  , where m

nC  is the number of combinations of n 

elements taken m at a time; p is the probability of the occurrence of 

event A, p=P(A); q is the probability of the nonoccurrence of event A, 

that is )(1 APpq  . 

                                      mnmm
nn qpCmP )(  

 

8.8. A discrete random variable. The distribution law of a discrete 

random variable 

Definition. A variable quantity X which, in a trial, assumes one 

value out of a finite or infinite sequence x1, x2, . . . ,  xk, . . .  is called a 

discrete random quantity (or variable), if to each value 
k

x  there 

corresponds a definite probability 
k

p  that the variable x  will assume the 

value 
k

x . 

It follows from the definition that to every value 
k

x  there 

corresponds a probability 
k

p . 

The functional relationship between pk and xk is called the 

distribution law of probabilities of a discrete random variable x * 

 

Possible values 

of the random 

variable X  

x1 x2 … xi … xn 

Probabilities of 

these values p 

p1 p2 … pi … pn 

                                        

 

 

 

 

 

                                       

Fig. 6.  

 



95 

The distribution law can also be represented graphically in the form 

of a polygon of probability distribution (also called a frequency 

polygon): in a rectangular coordinate system, points are constructed with 

coordinates (
k

x ,
k

p ) and are joined by a polygonal line.  
 

8.9. Relative frequency and the probability of relative frequency in 

repeated trials 

Let X be a random variable denoting the relative frequency of 

occurrence of event A in athe sequence consisting of n trials. The probability 











n

m
xP  that the random variable X  will assume the value 

n

m
,  that is, 

that in n trials event A will occur m times  and the event A  

(nonoccurrence of A) will occur n-m times is equal to m

n
C p

m
q

n
-

m
, where m

n
C  

is the number of combinations of n elements taken m at a time; p is the 

probability of the occurrence of event A, )(APp  ; q is the probability of 

the  nonoccurrence of event A, that is, q=1—p = )(AP . Let’s make the 

distribution law. This distribution law is known as the binomial 

distribution because the probabilities pi are equal to the corresponding 

terms in the binomial expansion of the expression (q — p)
n
. 

 

 

8.10. The mathematical expectation of a discrete random variable 

Definition The mathematical expectation (or, simply, expectation) 

of a random variable X  (we symbolize expectation by )(XM  is the sum 

of the products of all possible values of the random variable by the 

probabilities of its values.  





n

k
kk

pxXM
1

)( . 

In a large number of trials, the arithmetic mean of the observed 

values is close to the expectation; or the arithmetic mean of the observed 

values of a random variable tends to the expectation when the number of 

trials increases without bound. 
 

Variance. Root-mean-square (standard) deviation  

In addition to the expectation of a random variable X , which 

defines the position of the centre of a probability distribution, a 

distribution is further characterized quantitatively by the variance of the 

random variable. The variance is denoted by )(XD .  

The word variance means dispersion. Variance is a numerical 
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characteristic of the dispersion, or spread of values, of a random variable 

about its mathematical expectation. 
 

Definition. The variance of a random variable X  is the expectation 

of the square of the difference between X and its expectation (that is, the 

expectation of the square of the appropriate centred random variable.  

            2
)(

x
mxMXD     or   




n

k
kkk

pmxXD
1

2)()( .      (8.10) 

Variance has the dimensions of the square of the random variable. It is 

sometimes more convenient in describing dispersion to make use of a quantity 

whose dimensions coincide with those of the random variable. This quantity is 

termed the root-mean-square deviation (standard deviation)  

Definition. The root-mean-square deviation (standard deviation) 

is the square root from the variance.  

)()( XDX  . 

Note. In computing variance, it is often convenient to transform 

formula (8.10) as follows 
22 )()(
x

mXMXD  . 

Properties of the mathematical expectation and the variance of a 

discrete random variable 

1. ccM )( ,  constc   

2. )()( XMcXcM  , 

3. )()()( YMXMYXM  , 

4. )()()( YMXMYXM  , 

5. 0)( cD , 

6. )()( 2 XDcXcD  , 

7. )()()( YDXDYXD  , 

8. )()()( YDXDYXD  . 
 

8.11. Continuous random variable. Probability density function of 

a continuous random. Variable. The probability of the random 

variable. Falling in a specified interval 

Example. The amount of wear of a cylinder is measured after a 

certain period of operation. This quantity is determined by the value of 

the increase in diameter of the cylinder. We denote it by x . From the 

essence of the problem, it follows that x can assume any value in a 

certain interval (a, b) of possible values. This quantity is termed a 

continuous random variable.  

We consider the continuous random variable x specified on a 
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certain interval  ba,  which can also be an infinite interval,   , . 

We divide this interval into subintervals of length 
11 


iii

xxx  by the 

arbitrary points 
n

xxxx ,...,,,
210

. 

Suppose we know the   probability that the random variable x  will 

fall in the interval  
1


ii

xx . We denote this probability  by  
ii

xxxP 
1

 

and represent it as the area of a rectangle with base 
i

x AAV (Fig. 6).  

Definition. If there exists a function  xfy   such that  

 
 xf

x

xxxP
x








0

lim         (8.11) 

then this function  xf  is termed the probability density_function of 

the random variable x (or, simply, density function), or the distribution. 

 

 

 

 

 

 

 

 

(It is also called the frequency function, distribution density, or the 

probability density.) We will use X  to denote the continuous random 

variable, x or xk to denote the values of this random variable.  The curve y = 

f(x) is called the probability curve or the distribution curve (Fig. 7). Using 

the definition of limit, from equation (8.12) follows, to within 

infinitesimals of higher order than x , the approximate equation 

                xxfxxXxP          (8.12) 

The following theorem holds true. 

Theorem. Let  xf  be the density function of the random variable x . 

Then the probability that a value of the random variable x  will fall in 

some interval  ,  is equal to the definite integral of the function  xf  

from   to   that is, we have the following equation: 

   




 dxxfXP                                  

     (8.13) 

 

 

 

 

 
Fig.  7. 

Fig. 8. 
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Knowing the probability density function of a random variable, we 

can determine the probability that a value of the random variable will lie 

in a given interval. Geometrically, this probability is equal to the area of 

the resulting curvilinear trapezoid (Fig. 8). 

It is possible to verify that 1


-

f(x)dx . 

 

8.12. The distribution function 

Definition. Let  xf  be the density function of some random 

variable x    x ; then the function 

                                             



x

dxxfxF     (8.14) 

is called the distribution function.  

From equation (8.13), it follows that the distribution function )(xF  is the 

probability that the random variable x  will assume a value less than x . 

The value of the distribution function for a given value of x is 

numerically equal to the area bounded by the distribution curve lying to 

the left of the ordinate drawn through the point x . The graph of the 

function )(xF  is termed the probability distribution curve.  

Theorem. The probability of a random variable x  lying in a given interval 

 ,   is equal to the increment in the distribution function over that interval:  

      FFXP  . 

Note that the density function  xf  and the corresponding distribution 

function )(xF  are connected by the relation  xfxF  )( . 

This follows from (8.4) and the theorem on differentiating a definite 

integral with respect to the upper limit. It can be shown )(xF  increases 

when x  increases and 1)(0  xF . 
 

8.13. Numerical characteristics of a continuous random variable 

Let us examine the numerical characteristics of a continuous random 

variable x  with density function  xf . 

Definition The mathematical expectation of a continuous random 

variable x  with density function  xf  is the expression 

   




 dxxfxxM . 
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Fig. 9. 
 

It is possible to use the symbol 
x

m  for the expectation. The expectation 

is called the centre of probability distribution of the random variable. 

(Fig. 9). If the distribution curve is symmetric about the x -axis, that is, if 

 xf  is an even function, then clearly 

    0 




dxxfxxM  

Let us consider a centered random variable
x

mx  . We will find its 

expectation 

    0)(  




dxxfmxmxM
xx

 

The expectation of a centered random variable is zero. 

Definition. The variance of a random variable x is the expectation 

of the square of the corresponding centred random variable 

   




 dxxfmxxD
x

2)( . 

Definition. The standard deviation of a random variable x is the 

square root of the variance: 

   xDx  . 

 
 
 

Definition. The value of the random variable x  for 

which the density function is a maximum is termed the mode (symbolized by 

M ). For the centered random variable x  the mode coincides with the 

expectation. 

Definition. A number (symbolized by 
e

M ) is called the median 

(Fig.10), if it satisfies the equation 

 

Fig. 10. 
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   
2

1
 





e

e

e

M

M

dxxfdxxf . 

 

8.14. Normal distribution the expectation of a normal distribution 

Studies of various phenomena show that many random variables, 

such, for example, as measurement errors, the lateral deviation and 

range deviation of the point of impact from a certain centre in gunfire, 

and the amount of wear in machine parts, have a density function given 

by the formula 

 









 





2

2

2
exp

2

1
)(



ax
xf                    (8.15) 

We say the random variable has normal distribution or is normally 

distributed (the term Gaussian distribution is also used). The so-called 

normal curve (normal distribution curve) in shown at the  fig. 11.  

 

 

 

 

 

 

 
 

It can be shown that the density function (8.15)  satisfies the basic 

relation 1


-

f(x)dx . 

The expectation of a random variable with normal distribution is 

 














 



 adx

ax
xm

x 2

2

2
exp

2

1


. 

The value of the parameter a in formula (8.15) is equal to the 

expectation of the random variable under consideration. The point ax   

is the centre of the distribution or the centre of dispersion. When ax   the 

function  xf  has a maximum and so the value ax   is the mode of the 

random variable. It may be shown that the median of the normal 

distribution is equal to a .  
 

Fig. 11 
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8.15. Variance and standard deviation of a normally distributed 

random variable 

The variance of a continuous random variable is found by formula  

 
 














 



 dx

ax
xxD

2

2

2

2
exp

2

1


. 

Calculation gives the result 

  2xD . 

The standard deviation, in accordance with formula 

   xDx     is     x . 

Thus, the variance is equal to the parameter 2  in the density 

function formula (8.15).  
 

8.16. The probability of a value of the random variable falling in a 

given interval. The Laplace function. Normal distribution function 

Let us determine the probability that a value of the random 

variable x having the density function  

 









 





2

2

2
exp

2

1
)(



ax
xf  

fall in the interval  ,   

   




 dxxfXP    or  

 
 

 








 







 
 dx

ax
XP

2

2

2
exp

2

1
. 

 Making the change of variable  

t
ax




2
 

we get 

  






2

2

21 








a

a

t dteXP
.                (8.16) 

The integral on the right is not expressible in terms of elementary 

functions. The values of this integral can be expressed in terms of the 

values of the probability integral    


x

t dtex
0

22


. 
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Here are some of the properties of the function.  

1.  x  is defined for all values of x . 

2.   00  . 

3.   1 .  

4.  x  is monotonic increasing on the interval  ,0 .  

5.  x  is an odd function since 

 x =  x . 

The graph of the function  x  is shown in Fig. 12.  

Rewrite equation (8.16) using the theorem on the partition of the 

interval of integration 

           














 








 
 









222

111 2

0

0

2

22




















aa
dtedteXP

a

t

a

t         (8.17) 

Let us compute the probability that a value of the random variable 

will fall in the interval  lala  ,  symmetric about the point ax  .  

Formula (8.17) then takes the form  

  














 











222

1



ll
laXlaP  

or 

  









2

l
laXlaP .  

The right side does not depend on the position of the centre of 

dispersion, and so for 0a  as well we get 

  









2

l
lXlP .             (8.18) 

Fig.12. 
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8.17. The three-sigma rule.  Error distribution 

In practical computations, the unit of measurement of the deviation 

of a normally distributed random variable from the centre of dispersion 

(the mathematical expectation) is taken to be the root-mean-square 

(standard) deviation  . Then, by formula (5.18), we get a useful 

equation: 

  997.0
2

3
33 








  XP . 

We can be almost certain that the random variable (error) will not 

depart from the absolute value of the expectation by more than 3 . 

This proposition is called the three-sigma rule.  

Note In place of the function,  x  frequent use is made of the 

Laplace function  

  



x t

dtex
0

2

2

2

1

 . 

The Laplace function is connected with the function  x  by a 

simple relation: 

  









22

1 x
x . 

 

PROBLEMS 

 

1)  The classical definition of probability 

1. One card is drawn from a deck of 36 cards. What is the probability of  

drawing a spade? 

2. Two coins are tossed at the same time. What is the probability of 

getting 2 heads. 

3. Two dice are thrown at one time. Find the probability that a sum of  

5 will turn up. 

4. One hundred cards are numbered from 1 to 100. Find the probability 

that randomly chosen card has the digit 5. 

5. There are 10 tickets in a lottery: 5 wins and 5 looses. Take two 

tickets. What is the probability of a win? 

6.* A die is thrown 5 times. What is the probability that a six will turn 

up twice and non-six three times? 

7. Ten times out of a set of 100 are defective. What is the probability 

that 3 out of any 4 chosen items will not be defective? 
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III 

II 

I 

2) The addition of probabilities. Multiplication of probabilities 

8. The probability of hitting a target from one gun is 0.8, from another 

gun, 0.7. Find the probability of destroying the target in a simultaneous firing 

from both guns. The target will be destroyed if at least one of guns makes a hit. 

9. Shots are fired at a certain domain D consisting of three non-

overlapping zones. The probability of hitting of: 

Zone I: P( 1A ) = 0.05 

Zone II: P( 2A ) = 0.1 

Zone III: P( 3A ) = 0.17 

What is the probability of hitting D? 
 

10. Non-failure operation of a device is 

determined by trouble-free operation of each of three 

component units. The probabilities of no-failure 

operation of the units during a certain cycle are  

6.01 p , 7.02 p , 9.03 p . Find the probability that the device will not break 

down the indicated operation cycle. 

11. Two tanks are firing at one and the same target. Tank one has a 

probability of 9/10 of hitting the target. Tank two -  a probability of 5/6. One 

shot is fired from each tank at the same time. Determine the probability that 

two hits will be scored. 

12.* The probability of destroying a target in one shot is equal to p. 

Determine the number n of shots needed to destroy the target with probability 

greater than or equal to a? 

13. There are 4 machines. The probability that a machine is in 

operation at an arbitrary time t is equal to 0.9. Find the probability that at 

time t at least one machine is working. 

14. The probability of hitting a target is p=0.9. Find the probability that 

in three shots there will be three hits. 

15. Box one contains 30% first-grade articles. One article is drawn 

from each box. Find the probability that both drawn articles are first-grade. 

16. The probability of a hit in a single shot is p=0.6. Determine the 

probability that three shots will yield at least one hit. 
 

3) Dependent event. Conditional probability. Total probability.  

Bayes’s  formula. 
 

17. The probability of manufacturing a non-defective (acceptable) item 

by a given machine is equal to 0.9. The probability of the occurrence of 

quality articles of grade one among the non-defective items is 0.8. Determine 

the probability of turning out grade-one articles by this machine. 
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18. Three shots are fired at a target in succession. The probability of a 

hit in the first shot is 3.01 p , in the second, 6.02 p , in the third, 8.03 p . In 

the case of one hit, the probability of destroying the target is 4.01  , in the 

case of two hits, 7.02  , in the case of three hits 0.13  . Determine the 

probability of destroying the target in three shots. 

19. Out of a total of 350 machines, there are 160 of grade one, 110 of 

grade two, and 80 of grade three. The probability of defectives in the grade-

one category is 0.01, in the grade-two category, 0.02, in the grade-three 

category, 0.04. Take one machine. Determine the probability that it is 

acceptable. 

20. At a factory, 30% of the instruments are assembled by specialists of 

high qualification, 70% by those of medium qualification. The reliability of 

an instrument assembled by the former is 0.9, that assembled by the latter, 

0.8. An instrument picked off the shelf turns out to be reliable. Determine the 

probability that it was assembled by the specialists of higher qualification. 

21.  Stack of two tanks fired independently at a target. The probability 

of the first tank destroying the target is 8.01 p , that of the second, 4.02 p . 

The target is destroyed by a single hit. Determine the probability it was 

destroyed by the first tank. 
 

4) Repeated trials 
 

22. What is the probability that event A will occur twice (a) in two 

trials, (b) in three trials, (c) in 10 trials, if the probability of the occurrence of 

the event in each trial is equal to 0.4? 

23. Five independent shots are fired at a target. The probability of a hit 

is each shot in 0.2. Three hits suffice to destroy the target. Determine the 

probability of target destruction. 

24. Four independent trials are carried out. The probability of the 

occurrence of event A in each trial is 0.5. Determine the probability that A 

will occur at least twice. 

25. The probability of defective items in a given batch is p=0.1. What is 

the probability that in a batch of three items there will be 2 defective items? 

26. Find the probability of obtaining at least one hit in the case of 10 

shots if the probability of hitting the target in a single shot is p=0.15. 
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Тable 34 

Basic definitions 
English Russian 

 

Ukrainian 

 

Theory of Probability Теория вероятностей Теорія ймовірностей 

random случайный випадковий 

event событие  

trial испытание випробування 

occur происходить відбуватися 

occurrence наступление настання 

toss подбрасывать підкидати 

head герб герб 

relative frequency относительная частота відносна частота 

cease прекращать припиняти 

accidental случайный випадковий 

compound составной складовій 

corroborate подтверждать підтверджувати 

die игральная кость гральна кістка 

equally probable events равновозможные события рівноможліві події 

disjoint (mutually exclusive) несовместный неспільний 

complete group полная группа повна група 

favorable благоприятный спріятливий 

certain event достоверное событие достовірна подія 

impossible event невозможное событие неможлива подія 

complementary events противоположные события протилежні події 

compatible events совместные события спільні події 

urn model схема урн схема урн 

the logical sum (union) of 

events 
сумма (объединение) событий сума (об'єднання) подій 

the logical product 

(interChapter) of events 

умножение (пересечение) 

событий 
множення (перетинання) подій 

conditional probability условная вероятность умовна ймовірність 

cause полная вероятность повна ймовірність 

discrete дискретный дискретний 

distribution law закон распределения закон розподілу 

frequency polygon полигон частот полігон частот 

repeated trials повторные испытания повторні випробування 

mathematical expectation математическое ожидание математичне очікування 

variance дисперсия дисперсія 

root-mean-square 
среднеквадратическое 

отклонение 
середнеквадратічне відхилення 

probability density function 
функция плотности 

вероятностей 

функція щільності 

ймовірностей 
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